ID: 24751390

第5章 二次函数 章节重难点复习(4个知识点 12种题型) 讲义(原卷版+解析版)2025-2026学年苏科版 数学九年级下册

日期:2025-12-31 科目:数学 类型:初中教案 查看:49次 大小:867832B 来源:二一课件通
预览图 0
讲义,九年级,数学,苏科版,学年,2025-2026
    第5章 二次函数 章末重难点复习(4个知识点+12种题型) 一、要点梳理 要点一、二次函数的定义 一般地,如果是常数,,那么叫做的二次函数. 要点诠释: 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小. 要点二、二次函数的图象与性质 1.二次函数由特殊到一般,可分为以下几种形式:   ①;②;③;④,   其中;⑤.(以上式子a≠0)   几种特殊的二次函数的图象特征如下: 函数解析式 开口方向 对称轴 顶点坐标 当时 开口向上 当时 开口向下 (轴) (0,0) (轴) (0,) (,0) (,) () 2.抛物线的三要素:   开口方向、对称轴、顶点.   (1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.   (2)平行于轴(或重合)的直线记作.特别地,轴记作直线. 3.抛物线中,的作用:   (1)决定开口方向及开口大小,这与中的完全一样.   (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,     故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧; ③(即、异号)时,对称轴在轴右侧.   (3)的大小决定抛物线与轴交点的位置.     当时,,∴抛物线与轴有且只有一个交点(0,):     ①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.   以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 . 4.用待定系数法求二次函数的解析式:   (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.   (2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.   (可以看成的图象平移后所对应的函数.)   (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:     (a≠0).(由此得根与系数的关系:). 要点诠释: 求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用. 要点三、二次函数与一元二次方程的关系   函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.   (1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;   (2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;   (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.     通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系: 的图象 的解 方程有两个不等实数解 方程有两个相等实数解 方程没有实数解 要点诠释: 二次函数图象与x轴的交点的个数由的值来确定.   (1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;   (2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;   (3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 要点四、利用二次函数解决实际问题 ( E )利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.   利用二次函数解决实际问题的一般步骤是:   (1)建立适当的平面直角坐标系;   (2)把实际问题中的一些数据与点的坐标联系起来;   (3)用待定系数法求出抛物线的关系式;   (4)利用二次函数的图象及其性质去分析问题、解决问题. 要点诠释:(例:y= - x2+2x+3) 常见的问题:求最大(小)值( ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~