
中小学教育资源及组卷应用平台 9.3.2 旋转的特征 一、单选题 1.如图, 由 绕 点旋转 而得到,则下列结论不成立的是( ) A.点 与点 是对应点 B. C. D. 2.如图,将△ ABC绕点 A逆时针旋转 得到△ ADE,点B,C的对应点分别为D,E,若 且 于点F,则 的度数为( ) A. B. C. D. 3.如图,在中,,将绕点顺时针旋转角至,使得点恰好落在边上,则等于( ) A. B. C. D. 4.如图,将绕着点C顺时针旋转一定角度后得到,若,,则的度数是( ) A. B. C. D. 5.如图,在中,已知,将绕点顺时针旋转到的位置,则的度数是( ) A. B. C. D. 6.如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边上,若,,则的长为( ) A.4 B.5 C.6 D.7 二、填空题 7.如图,把△ABC绕点C顺时针旋转得到△A′B′C,此时A′B′⊥AC于D,已知∠A=51°,则∠B′CB的度数是 . 8.如图,将三角形AOB绕点O按逆时针方向旋转55°后得到三角形,若,则 度. 9.如图,在中,,,以点C为旋转中心顺时针旋转得到(其中点A与点E是对应点,点B与点D是对应点),那么的度数为 . 10.如图,将绕点C顺时针旋转得到,若,则 °. 11.如图所示,点是正方形内的一点,将绕点顺时针旋转至.若已知,则的度数为 . 12.如图,在平面直角坐标系 中,点 A,点 A的坐标分别为(0,2),(-1,0),将线段AB 绕点 O顺时针旋转,若点 A 的对应点A' 的坐标为吗(2,0),则点 B 的对应点B'的坐标为 . 三、计算题 13.如图,两点的坐标分别为,将线段绕点逆时针旋转得到线段,过点作于点,反比例函数的图象经过点. (1)求反比例函数的表达式; (2)若是反比例函数的图象上的点,当的面积为3时,求点的坐标. 四、解答题 14.如图,四边形ABCD在平面直角坐标系中, (1)分别写出点A、B、C、D各点的坐标; (2)作出四边形ABCD关于原点O对称的四边形A′B′C′D′,并写出各顶点坐标. 15.如图,在中,逆时针旋转一定角度后与重合,且点C恰好为的中点.指出旋转中心,并求出旋转角的度数和的长. 16.如图,已知AD是△ABC的中线. (1)画出以点D为对称中心与△ABD成中心对称的三角形. (2)画出以点B为对称中心与(1)所作三角形成中心对称的三角形. (3)问题(2)所作三角形可以看作由△ABD作怎样的变换得到的? 答案解析部分 1.【答案】C 【知识点】旋转的性质 2.【答案】A 【知识点】旋转的性质 3.【答案】D 【知识点】三角形内角和定理;旋转的性质 4.【答案】C 【知识点】三角形内角和定理;旋转的性质 5.【答案】B 【知识点】旋转的性质 6.【答案】A 【知识点】旋转的性质 7.【答案】39° 【知识点】旋转的性质 8.【答案】40 【知识点】旋转的性质 9.【答案】 【知识点】旋转的性质 10.【答案】70 【知识点】旋转的性质 11.【答案】 【知识点】三角形内角和定理;旋转的性质 12.【答案】(0,1) 【知识点】旋转的性质 13.【答案】(1) (2)或 【知识点】三角形的角平分线、中线和高;旋转的性质 14.【答案】(1)A(0,﹣2),B(2,﹣2),C(1,0),D(1,3); (2) 如图所示: A′(0,2),B′(﹣2,2),C′(﹣1,0),D(﹣1,﹣3) 【知识点】作图﹣旋转 15.【答案】解:在中, ∴, ∴, ∵当逆时针旋转一定角度后与重合, ∴旋转中心为点A,旋转角的度数为, 由旋转得, ∵为的中点, ∴ ∴. ∴旋转中心为点A,旋转角的度数为,. 【知识点】旋转的性质 16.【答案】(1)如图所示,△ECD是所求的三角形 (2)如图所示,△E'C'D'是所求的三角形 (3)△E'C'D'是由△ABD沿DB方向平移得到的 【知识点】作图﹣旋转 21世纪教育网 www.21cnjy.com 精品试卷·第 2 ... ...
~~ 您好,已阅读到文档的结尾了 ~~