中小学教育资源及组卷应用平台 浙教版七年级数学下册第2章《二元一次方程组》单元检测(解析卷) 全卷共三大题,24小题,满分为120分. 一、选择题:本大题有10个小题,每小题3分,共30分.在每小题只有一项是符合题目要求的. 1.下列各式中,是关于x,y的二元一次方程的是( ) A. B. C. D. 【答案】C 【分析】根据二元一次方程的定义,可得答案. 【详解】解:A、是多项式,故A不符合题意; B、最高是二次,故B不符合题意; C、是二元一次方程,故C符合题意; D、不是整式方程,故D不符合题意; 故选:C. 2.若是关于,的二元一次方程的一组解,则的值为( ) A. B. C. D. 【答案】C 【分析】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知二元一次方程解的定义是解题的关键.根据二元一次方程的解的定义把代入到得到关于的方程即可求解. 【详解】解:∵是关于的二元一次方程的一组解, , . 故选:C. 3.已知与是同类项,则( ) A. B. C. D. 【答案】B 【分析】本题主要考查同类项及二元一次方程组的解法,熟练掌握同类项及二元一次方程组的解法是解题的关键.由题意易得,然后求解即可. 【详解】根据题意得,, 由①得,, 把③代入②得,, 解得,, 把代入③得,, 故选:B. 小亮解方程组时,得到其正确的解为, 但不小心滴上的两滴墨水刚好遮住了两个数和,则这两个数分别为( ) A.8和 B.6和4 C.2和8 D.6和 【答案】A 【分析】本题主要考查二元一次方程组的解的定义,掌握二元一次方程组的解满足各个方程是解题的关键.直接根据方程组解的定义把代入方程求出y的值,进而求出的值,由此即可得到答案. 【详解】解:∵方程组 的解为, ∴, ∴, ∴, ∴和分别表示8和, 故选:A. 我国明代《算法统宗》一书中有这样一题: “一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算). ”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺: 如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺? 设竿长x尺,绳索长y尺,根据题意可列方程组为( ) A. B. C. D. 【答案】A 【分析】本题考查了列二元一次方程组,正确掌握相关性质内容是解题的关键.设竿长尺,绳索长尺,根据“索比竿子长一托”可得;对折绳索后长度为,此时“比竿子短一托”,即,由此建立方程组. 【详解】解:∵绳索比竿长5尺, 即,对应方程。 ∵对折后的绳索长度为,比竿短5尺, 即, 对应方程, 联立方程:, 故选:A 6.已知方程组的解为,则2a﹣3b的值为( ) A.4 B.6 C.﹣4 D.﹣6 【答案】B 【分析】将x和y的值代入到方程组,原方程组变成关于a、b的方程组.再仔细观察未知数的系数,相同或者相反,可以运用加减消元解题. 【详解】解:∵方程组的解为, ∴. 由①+②得a=,② ①得b= 1. 将a=,b= 1代入2a 3b,即2× 3×( 1)=3+3=6. 故选:B. 7.根据图中提供的信息,可知每个杯子的价格是( ) A.51元 B.35元 C.8元 D.7.5元 【答案】C 【分析】要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94. 【详解】解:设一杯为x,一杯一壶为43元, 则右图为三杯两壶,即二杯二壶+一杯, 即:43×2+x=94 解得:x=8(元) 故选C. 8.一群人去袁山公园坐小船游湖,若租用座的小船若干条,则有人没座位, 若租用座小船则刚好坐满,但要多租条,若同时租两种或只租一种, 使每条小船坐满且每人都有座位,则共有租船方案( ) A.种 B.种 C.种 D.种 【答案】C 【分析】本题考查了一元一次方程和二元一次方程的应用,设需租座的小船条,则需租座的小船条,利 ... ...
~~ 您好,已阅读到文档的结尾了 ~~