ID: 25058918

3.3垂径定理达标练习(含解析)北师大版数学九年级下册

日期:2026-02-04 科目:数学 类型:初中试卷 查看:81次 大小:1519934B 来源:二一课件通
预览图 1/5
垂径,定理,达标,练习,解析,北师大
  • cover
中小学教育资源及组卷应用平台 3.3垂径定理 学校:_____姓名:_____班级:_____考号:_____ 一、单选题 1.下列语句,错误的是( ) A.直径是弦 B.过圆心的弦是直径 C.平分弧的直径垂直于弧所对的弦 D.相等的圆心角所对的弧相等 2.如图以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为( ) A.2 B.4 C.6 D.8 3.《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,为的直径,弦于,寸,寸,求直径的长.”则 A.寸 B.寸 C.寸 D.寸 4.如图,是的弦,半径为,,则弦的长为(  ) A. B. C. D. 5.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯长一尺,问径如何?”这段话的意思是:如图,现有圆形木材,埋在墙壁里,不知木材大小,用锯子将它锯下来,深度CD为1寸,锯长AB为1尺(10寸),问圆材直径几寸?则该问题中圆的直径为( ) A.22寸 B.24寸 C.26寸 D.28寸 6.如图,是的直径,是的弦,于点,则下列结论不一定正确的是要(  ) A. B. C. D. 7.在Rt△ ABC中,∠ C=90°,BC=6,AC=8,D、E分别是AC、BC上的一点,且DE=6, 若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( ) A. B. C. D. 8.如图,是上的一点,与交于点,已知弦,,,则半径的长为( ) A. B. C. D. 9.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,AB=12cm,AO=8cm,则OC长为( )cm A.5 B.4 C. D. 10.在已知点M(3,﹣4),在x轴上有一点与M的距离为5,则该点的坐标为(  ) A.(6,0) B.(0,1) C.(0,﹣8) D.(6,0)或(0,0) 11.《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,为的直径,弦于,寸,寸,求直径的长.”则为(  ) A.10寸 B.3寸 C.20寸 D.26寸 12.如图,四边形内接于,,.劣弧沿弦翻折,刚好经过圆心.当对角线最大时,则弦的长为( ) A. B. C. D. 二、填空题 13.如图所示,是圆的半径,弦于点,已知,,则弦 . 14.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕、,且,垂足为M(如图②),之后将纸片如图③翻折,使点B与点M重合,折痕与相交于点N,连接、(如图④),则的面积是 . 15.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是 度. 16.如图,是⊙O的弦,点C在⊙O内,,连接,若⊙O的半径是4,则长的最小值为 . 17.如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 ,⊙C上的整数点有 个. 三、解答题 18.如图①,O为圆柱形木块底面的圆心,过底面的一条弦AD,沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm.若弧AMD的长为底面周长的,如图②所示. (1)求⊙O的半径; (2)求这个圆柱形木块的表面积.(结果可保留π和根号) 19.如图所示,是圆O的一条弦,是圆O直径,垂足为. (1)若,求的度数; (2)若,,求圆O的半径长. 20.如图,点P的坐标为(4,0),⊙P的半径为5,且⊙P与x轴交于点A、B,与y 轴交于点C、D,试求出点A、B、C、D的坐标. 21.已知:如图,是的直径,是的弦,且,垂足为,连接,,,求的长. 22.如图,在上,经过圆心的线段于点,与交于点. (1)如图1,当半径为,若,求弦的长; (2)如图2,当半径为 ,,若,求弦的长. 23.如图,与相交于点.求的长. 24.如图,直径是50cm圆柱形油槽装入油后,油深C ... ...

~~ 您好,已阅读到文档的结尾了 ~~