ID: 6832122

人教版七年级数学下册 5.2《平行线及其判定》讲义 含同步习题(扫描版 附答案)

日期:2025-11-24 科目:数学 类型:初中学案 查看:52次 大小:294914B 来源:二一课件通
预览图 1/4
人教,答案,扫描,习题,同步,讲义
  • cover
人教版 七年级数学 5.2《平行线及其判定》 讲义 一、平行线 (一)平行线 在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外). (1)平行线的定义:在同一平面内,不相交的两条直线叫平行线. 记作:a∥b; 读作:直线a平行于直线b. (2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意: ①前提是在同一平面内; ②对于线段或射线来说,指的是它们所在的直线. (二)平行线公理及推论 (1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行. ?(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思. (3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. (4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用. 二、平行线的判定 (一)同位角、内错角 同旁内角 (1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角. (2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角. (3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角. (4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. (二)平行线的判定 (1)定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行. ?(2)定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行. ?(3?)定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行. (4)定理4:两条直线都和第三条直线平行,那么这两条直线平行. (5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行. 人教版 七年级数学 5.2《平行线及其判定》 同步习题 1、选择题(8小题) 二、填空题 三、解答题 参考答案 1-5 D A B B C 6-8 C C C 9. ∠ADE = ∠ B (答案不唯一) 10. 50 11. 12. 13. 14. 15. ... ...

~~ 您好,已阅读到文档的结尾了 ~~