首页
初中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 12295085
北京版八年级数学上册12.7 《直角三角形全等的判定》教学设计(表格式)
日期:2026-02-14
科目:数学
类型:初中教案
查看:97次
大小:93184B
来源:二一课件通
预览图
1/3
张
北京
,
八年级
,
数学
,
上册
,
12.7
,
直角三角形全等的判定
直角三角形全等的判定 教师姓名: 学校: 指导思想和理论依据 数学课程基本理念中指出,数学教学活动,特别是课堂教学应激发学生兴趣,调动学生积极性,鼓励学生的创造性思维;引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想与方法,获得基本的数学活动经验。 教学背景分析 本课时教学内容的功能和地位本节知识是在已研究“一般三角形全等的性质和判定”的基础上,对“直角三角形的全等的判定”进一步深入和拓展;通过本节课的学习,使三角形全等判定的知识相对完整,因此本节课的学习是前面学习的发展和深化,同时直角三角形在本章乃至整个平面几何教材中都有着重要的基础性的地位,它为我们今后学习其他图形等知识奠定了基础,是进一步研究轴对称、四边形等知识的工具性内容。因此本节课在教材中具有承上启下的作用。 学生情况分析本学期着重进行了演绎推理方法的训练,目前正处在论证语言逐步规范、逻辑思维逐渐增强的阶段。相对于代数部分,大多数学生还是对几何更感兴趣。因为几何的直观性,可以充分发挥孩子的想象力、创造力,不少同学在几何的学习中更容易找到成就感,对新接触的几何定理也很感兴趣,因此可以为解题带来便利,这些都为本节课的教学创造了有利条件。(三)教学准备在知识基础方面:学生在此之前已经学习了一般三角形全等的判定的相关知识,对全等三角形的判定已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于直角三角形全等的判定的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。在教学手段方面:本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考、动手实践和相互交流的形式,在教师的指导下发现、分析和解决问题;另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 教学目标 1.理解并掌握直角三角形全等的“斜边、直角边”判定方法,并会用此定理进行简单的推理.2.在探索直角三角形全等的条件及其运用的过程中,体会利用分析、实践操作、归纳获得数学结论的过程,初步形成解决问题的基本策略. 3.在探究直角三角形全等的判定过程中,以观察思考、动手画图、合作交流等多种形式共同探讨,培养协作精神. 教学重点和难点分析 (一)教学重点:“斜边、直角边”定理的探索和运用(二)教学难点:探索“斜边、直角边”定理 教学过程 教学环节 教师活动 学生活动 设计意图 温习旧知 【问题1】判定两个三角形全等有哪些方法?具体解释“SAS”,边角的位置关系.指出“假冒产品SSA” SSS 、SAS、 AAS、 ASA 复习旧知,为导入新课,创设思维情景奠定基础 引入新知 【问题2】上述判定两个三角形全等的方法适用于直角三角形吗?为什么?直角三角形是特殊的三角形,除了上述判定全等的方法,还有没有它特定的判定方法呢?———(板书课题)直角三角形全等的判定 适用直角三角形是特殊的三角形 提出待解决的问题,让学生带着疑问进行学习 探索新知 【问题3】两个直角三角形已具备什么条件?判定两个直角三角形全等还需要几个条件?差的两个条件,有哪几种情况?【问题4】对于每种情况的两个直角三角形是否全等呢?【实践探究】除直角外,再给出一条直角边和一条斜边对应相等,两个三角形是否全等?几何画板进行一般性的演示 已具备一直角还需两个条件①两锐角②一边一角③两边小组合作学习代表汇报讨论结果实践验证,认可定理利用量角器、三角板、圆规等工具,按照设定值画出直角三角形,并剪下,观察与同伴所做三角形是否完全重合 渗透排列组合、分类讨论 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
分式的概念 课件(共19张PPT) 沪科版数学七年级下册(2026-02-11)
2026年中考数学二轮复习:一次函数与反比例函数交点问题训练(含解析)(2026-02-11)
2026年中考数学专题训练:面积问题(二次函数综合)(含解析)(2026-02-11)
2026年中考数学专题训练:线段周长问题(二次函数综合)(含解析)(2026-02-11)
2026学年中考数学一轮专题复习:二次函数中特殊三角形存在性问题(含解析)(2026-02-11)
上传课件兼职赚钱