(
课件网) 6.6 简单的概率计算 第二课时 学会使用概率计算公式计算简单随机事件发生的概率. 学习目标 一般地,在一次试验中,如果共有有限个可能发生的结果,并且每种结果发生的可能性都相等,用m表示一个指定事件E包含的结果数,n表示试验可能出现的所有结果的总数,那么事件E发生的概率可利用下面的公式计算: 回顾 你玩过剪子、石头、布的游戏吗? 小亮和小莹玩这个游戏,游戏规则是: “剪刀”胜“布” “布” 胜“石头” “石头”胜“剪刀” (1)如果二人都随机出一个手势,那么在第一次“出手”时,小亮获胜的概率有多大?小莹获胜的概率呢? 观察与思考 剪子、石头、布 J S B J S B 小亮 小莹 J S B J S B J S B J J J S J B S J S S S B B J B S B B 小亮 小莹 J S B J S B J J J S J B S J S B B J B S B B S S 观察与思考 (2)两人同时出手后,出现平局的概率有多大? (3)假设两人 经过n此出手,皆为平局,直到第n+1次出手实验才决出胜负,那么在第n+1次出手时,甲、乙两人获胜的概率分别为多大? 观察与思考 某快餐店为了招揽顾客,推出一种“转盘”游戏:一个圆形转盘被分成了12个圆心角都相等的扇形,其中有2个扇形涂成红色,4个扇形涂成绿色,其余涂成黄色。顾客消费满200元后,可以自由转动一次转盘。如果转盘停止后,指针落在绿色区域获得二等奖,落在红色区域 获得一等奖,凭奖券顾客下次来店就餐时, 可分别享受九折、八折优惠。 例3 (1)这个游戏一、二等奖的中奖率分别是多少? (2)这个游戏的中奖率是多少? 例3 分析:指针落在转盘的位置实际上有无限多个等可能的结果,将转盘等分为若干扇形后,就转化为只有有限多个等可能结果的情况,从而可以利用上节课的公式来计算概率。 你知道田忌赛马的故事吗?据《史记》记载,在战国时期,齐威王和他的大臣田忌各有上、中、下三匹马,在同等级的马中,齐威王的马比田忌的马跑得快,但每人较高等级的马都比对方较低等级的马跑的快。有一天齐威王要与田忌赛马,双方约定:比赛两局,每局各出一匹,每匹马只赛一次,赢得两局着为胜。齐威王的马按上、中、下顺序出阵,加入田忌的马随机出阵,田忌获胜的概率是多少? 例3 齐: 上 中 下 田: 上 中 下 上 下 中 中 上 下 中 下 上 下 上 中 下 中 上 √ X X X X X X √ X X X √ X √ √ X X √ 例3 1.从正面分别写有1、2、3、4、5、6的6张卡片中,任意抽出1张,得到下列结果的概率是多少? (1)卡片上的数字是奇数; (2)卡片上的数字是偶数; (3)卡片上的数字不小于3. 练习 2.个不透明的口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色外没有任何区别,现从中任意摸出一个球。 (1)计算摸到的是绿球的概率。 (2)如果要使摸到绿球的概率为1/4,需要 在口袋中再放入多少个绿球? 练习 通过今天的学习,你对概率的简单计算有什么收获和新的认识?能谈谈你的想法吗? 6.6 简单的概率计算(3) 1.通过实例进一步丰富对概率的认识; 2.会用几何的方法求简单的概率; 3.紧密结合实际,培养应用数学的意识. 学习目标 2路车公交车站每隔5分钟发一班车.小亮来到这个汽车站,问候车时间不超过1分钟的概率是多少?候车时间等于或超过3分钟的概率是多少? 解: 画一条长度为5个单位的线段,表示相邻两次发车的间隔时间.用左端点表示上一班车开走的时刻,记为0 min,右端点表示下一班车开走的时刻,记为5min. 5 4 1 0 3 2 例5 由于车站每隔5分钟发一班车,当到达车站在最后1分钟内时,候车时间不超过1分钟,于是 当上一班汽车发车2分钟以内(包括2分钟)到达汽车站时,候车时间等于或超过3分钟. 5 2 3 ( = ≥ 分钟) 候车时间 P 例5 单击此处编辑母 ... ...