ID: 18890836

京改版数学七年级下册5.4 用加减消元法解二元一次方程组 导学案(无答案)

日期:2025-10-29 科目:数学 类型:初中学案 查看:34次 大小:90112B 来源:二一课件通
预览图 1/3
二元,答案,导学案,方程组,一次,法解
  • cover
用加减消元法解二元一次方程组 导学案 【知识回顾】 1、解二元一次方程组的基本思想是_____,要把二元一次方程组转化为_____解决. 2、完成下面填空 (1) (2) (3),(4) (5). 观察原式与结构,可以发现:每小题中的式子中都含有_____个字母,而结果中含有_____个字母. 3、等式的两边都加上(或减去)同一个整式,等式还能成立吗? 用代入法解方程组,并检验. 【学习目标】 1.进一步理解解方程组的消元思想. 2.了解加减法是消元的又一种基本方法,会用加减法解一些简单的二元一次方程组. 【学习重点与难点】 重点:会用加减法解二元一次方程组. 难点:灵活运用加减消元法的技巧. 【学习过程】 一、导入新课: 上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其它方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容. 二、新知学习 (一)同一个未知数的系数相同(或互为相反数)的二元一次方程组的解法 1、观察方程组,并思考: (1)方程①中的系数是_____,方程②中的系数是_____,这两个数_____. 方程①中的系数是_____,方程②中的系数是_____,这两个数_____. (2)若把方程①、方程②的左右两边分别相加,可得方程_____,得到的这个方程是二元一次方程还是一元一次方程?答:_____. 若把方程①、方程②的左右两边分别相减,可得方程_____,得到的这个方程是二元一次方程还是一元一次方程?答:_____. (3)通过上面的思考,通过方程两边相加(或相减)的方法,能把二元一次方程组转化为一元一次方程吗? (4)经过上面的思考后,请同学们认真看课本39页- 40页思考上面的内容. 体会: ①这种解法与代入法相同吗?你能说出这种解法的根据吗? ②用这类解法的方程有什么特点? ③什么是加减消元法? 通过把两个方程_____或_____消去一个未知数,转化为_____,这种解法叫做加减消元法,简称加减法. 2、反馈练习 解方程组:(1);(2). 提示:方程组中的系数的特点是_____,把这两个方程的两边相_____,可消去未知数. 方程组中的系数的特点是_____,把这两个方程的两边相_____,可消去未知数. 请写出解答过程. 规律总结:在方程组的两个方程中, (1)若同一个未知数的系数相同,可直接把这两个方程相_____(加或减),消去系数相同的这个未知数; (2)若同一个未知数的系数互为相反数,可直接把这两个方程相_____(加或减),消去系数相同的这个未知数; (二)不具备系数相同(或互为相反数)的二元一次方程组的解法 1、学前思考 能不能由方程得到?怎么得到的? 2、知识探究 已知方程组.思考 (1)在上面的这个方程组中,两个方程中的未知数和的系数相同吗?互为相反数吗?能不能直接把这两个方程相加(或相减)消去一个未知数? (2)能利用等式的性质使这两个方程的某一个未知数的系数变为相同或互为相反数吗?如何变化? (3)尝试求出这个方程组的解. (4)反思 在上面给出的方程中,能通过变形消去未知数吗?需怎样变化?尝试写出解答过程. (5)运用这种方法解课本P40例2,并与答案对照. 3、反馈练习 解方程组 三、归纳小结 加减消元法解方程组基本思路:加减消元--二元--一元 主要步骤有: 变形--同一个未知数的系数相同或互为相反数 加减--消去一个元 求解--分别求出两个未知数的值 写解--写出方程组的解 【精练反馈】 基础部分 1、方程组,由②①,得正确的方程是( ) A.  B.  C.  D.  2、已知二元一次方程组,用加减法解该方程组时,将方程①两边同时乘以_____,再将得到的方程与方程②两边相_____,即可消去_____. 3、用加减法解方程组时,要使两个方程中同一未知数的 ... ...

~~ 您好,已阅读到文档的结尾了 ~~