ID: 20432333

人教版数学七年级下册5.1.1 相交线 教案

日期:2026-02-14 科目:数学 类型:初中教案 查看:77次 大小:77164B 来源:二一课件通
预览图 1/3
人教,数学,七年级,下册,5.1.1,相交
  • cover
5.1.1相交线 【教学目标】 1.经历探究对顶角、邻补角的位置关系的过程;了解对顶角、邻补角的概念。 2.掌握“对顶角相等”的性质,并会运用它进行简单的说理。 3.动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。 【教学重难点】 邻补角、对顶角的概念,对顶角性质与应用。理解对顶角相等的性质的探索。 【教学过程】 一、课前设计 (一)预习任务 任务1 阅读教科书中第2页,请回答,画直线AB.CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 任务2 什么是邻补角、对顶角,它们有什么性质?请用你所学的知识说明为什么? (二)预习自测 1.填表: 两直线相交 所形成的角有 对顶角有 邻补角有 数量关系式有 答案:所形成的角有:∠1,∠2,∠3,∠4;对顶角有:∠1和∠3,∠2和∠4; 邻补角有:∠2和∠3,∠2和∠1,∠4和∠3,∠4和∠1. 2.如图所示,∠α和∠β是对顶角的图形有 个 。 A.1个 B.2个 C.3个 D.4个 答案:A 二、课堂设计 (一)知识回顾 1.直线的特征,直线公理。 2.互为补角的概念,互为补角的性质。 (二)探究问题 问题探究一 两直线相交形成的四个角中的任两角的位置关系和数量关系: 活动1 问题:(1)两条相交直线。形成的小于平角的角有几个? (2)请你画出任意两条相交直线 ①用量角器量一量4个角的度数,看看这四个角有什么数量关系? ②看看这四个角有什么位置关系? 活动2 有关概念: 邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。 对顶角:如果一个角的两边是另一个角的两边的反向延长 线,那么这两个角互为对顶角。 想一想:补角和邻补角的区别是什么? 活动3 练习 如图,AB.CD.EF 是经过点O的三条直线,说出: ∠AOC 的对顶角 ,∠FOB 的对顶角 , ∠DOF 的对顶角 ,∠AOD 的对顶角 , ∠EOB 的对顶角 ,∠AOF 的邻补角 。 问题探究二 对顶角的性质 活动1 对顶角的性质: 对顶角相等。 已知:直线AB与CD相交于O点(如图) 求证: ∠2=∠4,∠1=∠3,为什么? 详解:∠1的邻补角是∠2和∠4,所以∠1与∠2互补,∠1 与∠4互补,根据“同角的补角相等”,可以得出∠2=∠4,类似地有∠1=∠3. 问题探究三 利用对顶角的性质求角 活动1 例题讲解 例一 如图,直线a.b相交,∠1=40°,求∠2.∠3.∠4的度数。 知识点:邻补角的性质,对顶角的性质;数学思想:数形结合 解析:由邻补角的定义,得∠1+∠2=180°,所以∠2=180°—40°=140° 由对顶角相等,得∠3=∠1=40°,∠4=∠2=140° 方法总结:解答本题的关键是发现∠1与∠2是互为邻补角,求出∠2,然后利用对顶角相等求出∠3.∠4. 活动2 完成练习 如图,若∠1:∠2=4:14,求各角的度。 知识点:比的性质,邻补角的性质,对顶角的性质:数学思想:数形结合 解析:设∠1=4x°, ∠2=14x°, 由邻补角的定义,得∠1+∠2=180°,所以列方程得4x+14x=180°,解得x=10,所以得出∠1=40°,∠2=140°,由对顶角相等,得∠3=∠1=40°,∠4=∠2=140° 方法总结:解答本题的关键是利用已知的比值关系设出∠1和∠2,根据∠1与∠2是互为邻补角,列出方程求出∠1和∠2,然后利用对顶角相等求出∠3.∠4. 学生完成题目 如图,取两根木条a,b,将它们钉在一起,并把它们想象成两条直线,就得到一个相交线的模型。你能说出其中的一些邻补角与对顶角吗?两根木条所成的角中,如果∠=35°,其他三个角等于多少度?如果∠等于90°,115°,m°呢? 3.课堂小结 知识梳理 (1)两直线相交形成位置关系的角:邻补角和对顶角。 (2)对顶角的性质:对顶角相等。 重难点突破 (1)邻补角、对顶 ... ...

~~ 您好,已阅读到文档的结尾了 ~~