ID: 22631175

6.3 概率与统计的综合运用解答题(学生版+教师版)--2025年高考数学二轮复习学案

日期:2025-04-02 科目:数学 类型:高中学案 查看:49次 大小:6218763B 来源:二一课件通
预览图 0
习学,二轮,数学,高考,--2025年,教师
    / 让教学更有效 精品试卷 | 数学 6.3 概率与统计的综合运用解答题 考点分布 考查频率 命题趋势 统计综合: 统计图表及数字特征、独立性检验、线性拟合 2024年甲卷17题,12分 2023年乙卷第17题,12分 2023年II卷第19题,12分 2023年甲卷第17题,12分 2022年I卷第20题,12分 2022年II卷第19题,12分 预测2025年高考,概率与统计综合问题以解答题形式出现,概率统计在高考中扮演着很重要的角色,概率统计解答题是新高考卷及多数省市高考数学必考内容,考查热点为古典概型、相互独立事件的概率、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差的实际应用等。 概率综合: 古典概型、条件概率、全概率公式、分布列、期望与方差 2024年II卷第18题,17分 2024年北京卷第18题,17分 2023年I卷第21题,12分 2023年上海卷第19题,14分 2022年甲卷第19题,12分 从近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集,整理、分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决实际问题. 1.(2024新高考Ⅱ卷·18)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.(1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设,(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛? 2.(2024年北京高考数学真题18)某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表: 赔偿次数 0 1 2 3 4 单数 假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率. (1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差. (i)记为一份保单的毛利润,估计的数学期望;(ⅱ)如果无索赔的保单的保费减少,有索赔的保单的保费增加,试比较这种情况下一份保单毛利润的数学期望估计值与(i)中估计值的大小.(结论不要求证明) 3.(2024年全国甲卷17)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下: 优级品 合格品 不合格品 总计 甲车间 26 24 0 50 乙车间 70 28 2 100 总计 96 52 2 150 (1)填写如下列联表: 优级品 非优级品 甲车间 乙车间 能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率,设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?() 附: 0.050 0.010 0.001 k 3.841 6.635 10.828 4.(2023新高考Ⅰ卷·21)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~