
第28章《锐角三角函数》复习题--解直角三角形的四大模型 【模型一:背靠背型】 【模型分析】若三角形中有已知角时,则通过在三角形内作高,构造出两个直角三角形,求其中公共边是解题的关键. 【模型演变】 【模型突破】如图①,CE=DA,CD=EA,CE+BD=AB;如图②,CD=EF,CE=DF,AD+CE+BF=AB. 1.如图,小明与小华利用三角板测量教学楼前雕塑AB的高度.小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°;小华在五楼找到一点D,利用三角板测得A点的俯角为60°.已知CD为10米,则雕塑AB的高度是 .(,,结果精确到0.1米). 2.如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B, A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据: ,,,,,) 3.在一次课外活动中,甲、乙两位同学测量公园中孔子塑像的高度,他们分别在A,B两处用高度为1.5m的测角仪测得塑像顶部C的仰角分别为30°,45°,两人间的水平距离AB为20m,求塑像的高度CF.(结果保留根号) 4.某次台风来袭时,一棵笔直且垂直于地面的大树AB被刮倾斜后在C处折断倒在地上,树的顶部恰好接触到地面D处,测得∠ACD=60°,∠ADC=37°,AD=5米,求这棵大树AB的高.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73) 5.为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角∠ADF=45°,条幅底端E点的俯角为∠FDE=30°,DF⊥AB,若甲、乙两楼的水平距离BC为21米,求条幅的长AE约是多少米?(,结果精确到0.1米) 6.一滑板运动场斜坡上的点处竖直立着一个旗杆,旗杆在其点处折断,旗杆顶部落在斜坡上的点处,米,折断部分与斜坡的夹角为75°,斜坡与水平地面的夹角为30°,求旗杆的高度. (, ,精确到1米). 7.如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下: 方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(在同一条直线上). 数据收集:通过实地测量:地面上两点的距离为. 问题解决:求宝塔的高度(结果保留一位小数). 参考数据:,. 根据上述方案及数据,请你完成求解过程. 8.如图,在四边形中,,点D在上,,连接,且. (1)求的面积. (2)求的长度. (本题中计算过程和结果均保留根号) 9.如图,在东西方向的海面线MN上,有A,B两艘巡逻船,两船同时收到渔船C在海面停滞点发出的求救信号,测得渔船分别在巡逻船A,B的北偏西30°和北偏东45°方向,巡逻船A和渔船C相距120海里.(结果取整数,参考数据:≈1.41,≈1.73,≈2.45) (1)求巡逻船B与渔船C间的距离; (2)已知在A,B两艘巡逻船间有一观测点D(A,B,D在直线MN上),测得渔船C在观测点D的北偏东15°方向,观测点D的45海里范围内有暗礁.若巡逻船B沿BC方向去营救渔船C,问有没有触礁的危险?并说明理由. 10.问题1:如图①,在四边形中,,是上一点,,. 求证:. 问题2:如图②,在四边形中,,是上一点,,.求的值. 【模型二:母子型】 【模型分析】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键. 【模型突破】BC为公共边,如图①,AD+DC=AC;如图②,DC-BC=DB. 【模型演变1】 【模型突破】如 ... ...
~~ 您好,已阅读到文档的结尾了 ~~