ID: 23371798

6.5.1直线与平面垂直的判定 教学设计 北师大版必修2

日期:2025-09-30 科目:数学 类型:高中教案 查看:90次 大小:119105B 来源:二一课件通
预览图 1/2
6.5.1,直线,平面,垂直,判定,教学设计
  • cover
《直线与平面垂直的判定(北师大版)》教学设计 一、学习内容分析 本节课内容选自《普通高中课程标准实验教科书·数学必修2(北师大版)》第六章5.1节。本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。 本节课中的线面垂直定义是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带。学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。 二、学习者分析 本节课的学生是高二的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。 三、教学重点、难点 重点:直线与平面垂直的判定定理。 难点:探究得出出直线与平面垂直的判定定理及初步运用. 四、教学目标 1.描述直线与平面垂直的定义; 2.运用直线与平面垂直的判定定理证明简单的的空间位置关系问题. 3.通过对实例、图片的观察,概括定义,正确理解定义,增强观察能力; 4.在探索直线与平面垂直判定定理的过程中感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想. 五、教学过程 1.复习回顾,引入新课 问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系? 【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交 【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢? 【师生活动】教师引导学生回答面垂直这种位置关系是一种特殊的线面位置关系并揭示课题线 2.逐步探索,得出定义 问题:在日常生活中你见到的线面垂直的现象有哪些? 【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。对于旗杆与地面垂直的现象进行抽象化,让学生对下列问题进行思考。 思考: (1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少? (2)随着太阳的移动,影子BC的位置也会移动, 而旗杆AB与影子BC所成的角度是否会发生改变 (3)旗杆AB与地面上任意一条不过点B的直线的位置关系如何 依据是什么? 【设计意图】:第(1)与(2)两问是为了让学生发现旗杆AB所在直线始终与地面上任意一条过点B的直线垂直,第(3)问是为了进一步让学生发现旗杆AB所在直线始终与地面上任意一条不过点B的直线也垂直,那么学生就可以得到直线AB与地面内任意一条直线垂直。在这里,主要引导学生通过观察直立于地面的旗杆与它在地面的影子的位置关系来分析、归纳直线与平面垂直这一概念. 【师生活动】师生一起给出线面垂直的定义:如果直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作:.直线叫做平面的垂线,平面叫做直线的垂面.直线与平面垂直时,它们唯一的公共点叫做垂足。 3. 创设情境,猜想定理 【师生活动】教师引导学生认识到由于利用直线与平面垂直的定义直接判定直线与平面垂直是非常困难的,需要寻找简捷、可行的方法来判定直线与平面垂直。 【实验】准备一个三角形纸片,三个顶点分别记作,,.如图,过△的顶点折叠纸片,得到折痕,将折叠后的纸片打开竖起放置在桌面上.(使、边与桌面接触) 图 1 图2 【师生活动】教师引导学生 ... ...

~~ 您好,已阅读到文档的结尾了 ~~