ID: 23494195

16.1二次根式(巩固复习.培优卷.含解析)-2024-2025学年人教版(2024)数学八年级下册

日期:2025-09-19 科目:数学 类型:初中试卷 查看:32次 大小:87281B 来源:二一课件通
预览图 1/5
16.1,八年级,数学,2024,人教,学年
  • cover
中小学教育资源及组卷应用平台 巩固复习.培优卷 二次根式 一.选择题(共5小题) 1.要使分式有意义,则x的取值范围是(  ) A.x≥2 B.x<2 C.x≠﹣2 D.x>2 2.设x,y为实数,且,则|y﹣x|的值是(  ) A.1 B.9 C.4 D.5 3.下列式子一定是二次根式的是(  ) A. B. C. D. 4.已知下列各式:,,,,,其中二次根式有(  ) A.1个 B.2个 C.3个 D.4个 5.二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为(  ) A. B. C. D. 二.填空题(共5小题) 6.若二次根式在实数范围内有意义,则实数x的取值范围是    . 7.若,则xy的值为    . 8.若代数式有意义,则x的取值范围是    . 9.已知1=y,则x+y的算术平方根是   . 10.学习完“二次根式”后,成成同学画出了如下结构图进行知识梳理,图中A处应填    . 三.解答题(共5小题) 11.已知x、y为实数,且,求y﹣x2+17的值. 12.(1)若实数a、b满足,求a+b的立方根; (2)已知实数x,y满足,求xy的平方根. 13.定义:若两个二次根式a,b满足a b=c,且c是有理数,则称a与b是关于c的因子二次根式. (1)若a与是关于4的因子二次根式,则a=   ; (2)若与是关于2的因子二次根式,求m的值. 14.已知a,b为一个等腰三角形的两边长,且满足等式,求此等腰三角形的周长. 15.已知a满足|2019﹣a|a. (1)有意义,a的取值范围是    ;则在这个条件下将|2019﹣a|去掉绝对值符号可得|2019﹣a|=    (2)根据(1)的分析,求a﹣20192的值. 巩固复习.培优卷 二次根式 参考答案与试题解析 一.选择题(共5小题) 1.要使分式有意义,则x的取值范围是(  ) A.x≥2 B.x<2 C.x≠﹣2 D.x>2 【考点】二次根式有意义的条件;分式有意义的条件. 【答案】D 【分析】根据二次根式有意义和分式有意义的条件可得x﹣2>0,再解不等式即可. 【解答】解:由题意得:x﹣2>0, 解得:x>2, 故选:D. 【点评】此题主要考查了二次根式有意义和分式有意义的条件,分式有意义,分母不为0;二次根式的被开方数是非负数. 2.设x,y为实数,且,则|y﹣x|的值是(  ) A.1 B.9 C.4 D.5 【考点】二次根式有意义的条件. 【专题】二次根式;运算能力. 【答案】A 【分析】根据二次根式有题意的条件可求解x,y值,进而可求解|y﹣x|的值. 【解答】解:∵, ∴5﹣x≥0,5﹣x≤0, ∴5﹣x=0, 解得x=5, ∴y=4, ∴|y﹣x|=|4﹣5|=1. 故选:A. 【点评】本题主要考查二次根式有意义的条件,绝对值,灵活运用二次根式有意义的条件求解x,y值是解题的关键. 3.下列式子一定是二次根式的是(  ) A. B. C. D. 【考点】二次根式的定义. 【专题】二次根式;运算能力. 【答案】C 【分析】直接利用二次根式的定义,一般地,形如的代数式叫做二次根式进行判断即可. 【解答】解:∵x2≥0, ∴x2+2≥2, ∴一定是二次根式, 而、和中的被开方数均不能保证大于等于0,故不一定是二次根式, 故选:C. 【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键. 4.已知下列各式:,,,,,其中二次根式有(  ) A.1个 B.2个 C.3个 D.4个 【考点】二次根式的定义. 【专题】二次根式;运算能力. 【答案】D 【分析】根据二次根式的根指数是2且被开方数是非负数,解答即可. 【解答】解:中当x<3时,被开方数小于0,不是二次根式; ,,,是二次根式,共有4个. 故选:D. 【点评】本题考查二次根式的定义,掌握其定义是解决此题的关键.注意,二次根式的被开方数是非负数. 5.二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为(  ) A. B. C. D. 【考点】二次根式有意义的条件;在 ... ...

~~ 您好,已阅读到文档的结尾了 ~~