ID: 23585934

10.1.3 第2课时 古典概型的综合问题(课件 学案 练习)高中数学人教A版(2019)必修 第二册

日期:2025-11-15 科目:数学 类型:高中课件 查看:82次 大小:3460475B 来源:二一课件通
预览图 0
10.1.3,第二,必修,2019,人教,数学
    第2课时 古典概型的综合问题 1.欧几里得大约生活在公元前330~前275年之间,著有《几何原本》《已知数》《圆锥曲线》《曲面轨迹》等著作.若从上述4部书籍中任意抽取2部,则抽到《几何原本》的概率为(  ) A.   B.   C.   D. 2.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为(  ) A. B. C. D. 3.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  ) A. B. C. D. 4.将2个1和3个0随机排成一行,则2个1不相邻的概率为(  ) A.0.3 B.0.5 C.0.6 D.0.8 5.(2024·潍坊月考)将数据1,3,5,7,9这五个数中随机删去两个数,则剩下的三个数的平均数大于5的概率为(  ) A. B. C. D. 6.(多选)甲、乙两人做游戏,则下列游戏规则中公平的有(  ) A.抛掷一枚质地均匀的骰子,若向上的点数为奇数,则甲获胜;若向上的点数为偶数,则乙获胜 B.同时抛掷两枚质地均匀的硬币,若恰有一枚正面向上,则甲获胜;若两枚都正面向上,则乙获胜 C.从一副不含大小王的扑克牌中抽一张,若扑克牌是红花色,则甲获胜;若扑克牌是黑花色,则乙获胜 D.甲、乙两人各写一个数字6或8,若两人写的数字相同,则甲获胜,否则乙获胜 7.设连续投掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b=(2,3),则事件“a∥b”发生的概率为    . 8.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为    . 9.(2024·台州月考)据史料推测,算筹最晚出现在春秋晚期战国初年,是充分体现我国劳动人民智慧的一种计数方法.在算筹计数法中,用一根根同样长短和粗细的小棍子(用竹子、木头、兽骨、象牙、金属等材料制成)以不同的排列方式来表示数字,如果用五根小木棍随机摆成图中的两个数(小木棍全部用完),那么这两个数的和不小于9的概率为    . 10.垃圾分类是改善环境,节约资源的新举措.住建部于6月28日拟定了包括某市在内的46个重点试点城市,要求这些城市在2024年底基本建成垃圾分类处理系统,为此,该市某中学对学生开展了“垃圾分类”有关知识的讲座并进行测试,将所得测试成绩整理后,绘制出频率分布直方图如图所示. (1)求频率分布直方图中a的值,并估计测试的平均成绩; (2)学校要求对不及格(60分以下)的同学进行补考,现按比例分配的分层随机抽样的方法在成绩为[50,70)的同学中抽取5名,再从这5名同学中抽取2人,求这2人中至少有一人需要补考的概率. 11.已知A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是(  ) A. B. C. D.1 12.某校从高二年级800名男生中随机抽取50名测量其身高(单位:cm,被测学生的身高全部在155 cm到195 cm之间),将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),…,第八组[190,195],绘制成的频率分布直方图如图所示,若从身高位于第六组和第八组的男生中随机抽取2名,记他们的身高分别为x,y,则|x-y|≤5的概率为(  ) A. B. C. D. 13.某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示: A B C D E 身高 1.69 1.73 1.75 1.79 1.82 体重指标 19.2 25.1 18.5 23.3 20.9 (1)从该小组身高低于1.80米的同学中任选2人,求选到的2人的身高都在1.78米以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70米以上且体重指标都在[18.5,23.9)中的概率. 14.如图所示,现有一只迷失方向的小青蛙在3处,它每 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~