
7.4 三角函数应用 7.4.1 三角函数应用(1) 一、 单项选择题 1 已知简谐运动f(x)=A sin (ωx+φ)(A>0,ω>0,|φ|<)的振幅是,图象上相邻最高点和最低点的距离是5,且过点,则该简谐运动的频率和初相位分别是( ) A. , B. , C. , D. , 2 如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过个周期后,乙的位置将移至( ) A. 甲 B. 乙 C. 丙 D. 丁 3 记某时钟的中心点为O,分针针尖对应的端点为A. 已知分针长OA=5 cm,且分针从12点位置开始绕中心点O顺时针匀速转动. 若以中心点O为原点,3点和12点方向分别为x轴和y轴正方向建立平面直角坐标系,则点A到x轴的距离y(单位:cm)与时间t(单位:min)的函数解析式为( ) A. y=5|sin t| B. y=5|cos t| C. y=5 D. y=5 4 某城市在某天的气温变化T(单位:℃)与时间t(单位:h)的关系可以近似表示为T=8sin (t-)+18,t∈[0,24],则下列说法中错误的是( ) A. 当日最大温差为16℃ B. 中午十二点时达到当日最高气温 C. 午夜两点之后温度开始逐步上升 D. 早晚八点时温度相同 5 (2025哈尔滨期末)随着冬天的到来,越来越多的旅客从全国各地来到“尔滨”赏冰乐雪,今年冰雪大世界以“冰雪同梦,亚洲同心”为主题,一睹冰雕雪雕风采的同时还能体验各中冰上项目,如抽尜,大滑梯,摩天轮等.已知某地摩天轮最高点离地面高度128 m,最低点离地面高度 8 m,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针方向匀速旋转,转一周的时间约为24 min,游客甲坐上摩天轮的座舱,开始转动t min后距离地面高度为h m,则下列说法中正确的是( ) A. 摩天轮的轮盘直径为60 m B. h关于t的函数解析式为h=60sin (-)+8 C. h关于t的函数解析式为h=60cos (+)+68 D. 在游客乘坐一周的过程中,游客有16 min时间距地面高度超过38 m 6 某弹簧振子做简谐振动,其位移函数为y=sin (ωt+)(ω>0),其中t表示振动的时间,y表示振动的位移,当t∈[0,2]时,该振子刚好经过平衡位置(平衡位置即位移为0的位置)5次,则在该过程中该振子离平衡位置距离最远的次数为( ) A. 3 B. 2 C. 5 D. 5或6 二、 多项选择题 7 (2025淮安期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用(图1),明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图2).若一半径为2m的筒车水轮圆心O距离水面1m(图3),已知水轮按逆时针方向转动,每分钟转动4圈,当水轮上点P从水中浮现时(图3中点P0)开始计时,点P距离水面的高度可以用函数y=A sin (ωx+φ)+B(A>0,ω>0,|φ|<,B∈R)表示,则下列结论中正确的是( ) 图1 图2 图3 A. 点P所满足的函数表达式为y=2sin (-)+1 B. P第一次到达最高点需用时5s C. 点P再次接触水面需用时10s D. 当点P运动2.5s时,距离水面的高度为1.5m 8 (2024南通期末)如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm),它在t(单位:s)时相对于平衡位置(静止时的位置)的高度h cm由关系式h=A sin (πt+)确定,其中A>0,t≥0,则下列说法中正确的是( ) A. 小球在往复振动一次的过程中,从最高点运动至最低点用时2 s B. 小球在往复振动一次的过程中,经过的路程为20 cm C. 小球从初始位置开始振动,重新回到初始位置时所用的最短时间为 s D. 小球从初始位置开始振动,若经过最高点和最低点的次数均为10,则所用时间的范围是[,) 三、 填空题 9 如图是一弹簧振子做简谐运动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式可以是_____. 10 如图为一个钟摆的示意图,其中OA是钟摆能向左摆动的最大位置,角θ为钟摆在运动过程中与OA的夹角,已知θ与时间t(单位:s)满足 ... ...
~~ 您好,已阅读到文档的结尾了 ~~