ID: 24189492

第二十一章 一元二次方程 随堂练习(含答案)人教版数学九年级上册

日期:2025-11-14 科目:数学 类型:初中试卷 查看:24次 大小:402477B 来源:二一课件通
预览图 1/3
第二十,一章,一元二次方程,随堂,练习,答案
  • cover
中小学教育资源及组卷应用平台 第二十一章一元二次方程 一、单选题 1.用配方法解一元二次方程,下列变形正确的是(  ) A. B. C. D. 2.已知a,b是方程的两个实数根,求的值(  ) A.2023 B.2024 C.2025 D.2026 3.关于x的一元二次方程的一个根是0,则a的值为(  ) A.1 B. C.1或 D.2 4. 把方程 x2+6x -5 = 0化成 (x+m)2=n的形式,则 m+n的值为(  ) A.17 B.14 C.11 D.7 5.嘉嘉在解方程时,只得到一个解是,则他漏掉的解是(  ) A. B. C. D. 6.关于一元二次方程的根的说法,正确的是(  ) A.有两个相等实数根 B.没有实数根 C.两根之和为2 D.两根之积为 7.方程的左边配成完全平方后所得方程为(  ) A. B. C. D.以上答案均不对 8.如图是嘉淇用配方法解一元二次方程的具体过程,老师说这个解法出现了错误,则开始出现错误的步骤是(  ) A.② B.③ C.④ D.⑤ 9.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元.如果平均每月增长率为x,则由题意列方程应为(  ) A. B. C. D. 10.如图,在平面直角坐标系中,菱形ABCD位于第一象限,且对角线AC、BD所在的直线与坐标轴垂直,点A的坐标为,点D的坐标为.若双曲线与菱形ABCD有公共点,则k的取值范围为(  ) A. B. C. D. 11.关于的一元二次方程的两个根为,且.下列说法正确是(  ) ①;②;③④关于x的一元二次方程的两个相头. A.①②③ B.①②④ C.③④ D.①③④ 12.对于两个实数,,用表示其中较大的数,则方程的解是(  ) A., B., C., D., 二、填空题 13.如果两个不相等的实数a,b满足,,那么的值为   . 14.某区年第一季度为亿元,按计划每个季度将逐步增长,预计年第三季度将达到亿元.设第二、三季度的平均增长率为,根据题意,可列方程为   . 15.设,是关于x的方程的根,且,则k的值为   . 16.已知一元二次方程的两个根是菱形的两条对角线的长,则这个菱形的面积是   . 17.已知a、b是方程x2-x﹣3=0的两个根,则代数式a3-a2+3b-2的值为   . 三、解答题 18.某商场销售某女款上衣,刚上市时每件可盈利125元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为80元,平均每天可售出20件. (1)求平均每次降价的百分率; (2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2250元,每件应降价多少元? 19. 20.现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为96cm2的无盖长方体盒子,求剪去的小正方形的边长是多少. 21.已知关于的一元二次方程有两个实数根. (1)求实数的取值范围; (2)设,是该方程的两个实数根,是否存在实数,使得等式成立?如果存在,请求出的值,如果不存在,请说明理由. 22.受益于新能源产业的高速发展,我市某汽车零部件生产企业的利润逐年提高,据统计,年利润为亿元,年利润为亿元,求该企业从年到年利润的年平均增长率 23.已知关于的方程. (1)当时,求这个方程的根. (2)若方程恰有两个不相等的实数根,求的值. 24.如图1,在平面直角坐标系中,直线与交于点,与x轴,y轴分别交于C,D两点,与x轴,y轴分别交于A,B两点,且. (1)求直线的解析式; (2)如图2,在射线上有一动点F,连接、,M为x轴上一动点,连接、,当时,求的最大值; (3)如图3,在(2)的条件下,将沿直线平移得到,若在平移过程中是以为一腰的等腰三角形,请直接写出点的坐标. 参考答案 1.D 2.D 3.B 4.A 5.A 6.B 7.A 8.A 9.D ... ...

~~ 您好,已阅读到文档的结尾了 ~~