中小学教育资源及组卷应用平台 因式分解 单元模拟测试卷 (时间:100分钟 满分:120分) 一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的) 1.把多项式 分解因式, 所得的结果是( ) A. B. C. D. 2.已知多项式分解因式后有一个因式是,则的值为( ) A. B. C. D. 3.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:分别对应下列六个字:你、爱、中、数、学、国,现将因式分解,结果呈现的密码信息可能是( ) A.你爱数学 B.你爱学 C.爱中国 D.中国爱你 4.已知可被40至50之间的两个整数整除,则这两个整数是( ) A.41,48 B.45,47 C.43,48 D.41,47 5.已知,,那么代数式的值为( ) A.6 B.7 C.13 D.42 6. 下列因式分解正确的是( ). A. B. C. D. 7.下列各式从左到右的变形,因式分解正确的是( ) A.a(a+b)=a2+ab B.a2+ab﹣3=a(a+b)﹣3 C.2ab2﹣8a=2a(b2﹣4) D.a2﹣2a﹣8=(a+2)(a﹣4) 8.下列因式分解的结果正确的是( ) A. B. C. D. 9.下列变形:① ,② ,③ ,④ ,其中是因式分解的有( ) A.1个 B.2个 C.3个 D.4个 10.对于等式 有下列两种说法: ① 从左向右是因式分解; ②从右向左是整式乘法.关于这两种说法正确的是( ) A.①、②均正确 B.①正确,②错误 C.①错误,②正确 D.①、②均错误 二、填空题(本大题有6个小题,每小题3分,共18分) 11.因式分解: = 12.分解因式: (1) . (2) . 13.分解因式am+a= . 14.若 ,则代数式 的值为 . 15.已知,则 . 16.多项式的最小值为 . 三、综合题(本大题有8个小题,每小题9分,共72分,要求写出文字说明、证明过程或演算步骤) 17.探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答: ; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即: x2+(a+b)x+ab=(x+a)(x+b) 此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和. 猜想并填空:x2+8x+15=x2+[( )+( )]x+( )×( )=(x+ )(x+ ) (3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证.请写出验证过程. (4)请运用上述方法将下列多项式进行因式分解: ①x2+8x+12 ②x2-x-12 18.解答下列问题: (1)一正方形的面积是 ,则表示该正方形的边长的代数式是 . (2)求证:当n为正整数时, 能被 整除. 19.因式分解 (1) (2) (3) (4) 20.分解因式: (1) ; (2) . 21.下面是某同学对多项式进行因式分解的过程. 解:设, 原式(第一步), (第二步), (第三步), (第四步), (1)该同学第二步到第三步运用 进行因式分解; (2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果. (3)请你模仿以上方法尝试对多项式进行因式分解. 22. (1)分解因式:3x3﹣12x. (2)解不等式组: ,并写出它的整数解. 23.仔细阅读下面的例题,并解答问题: 例题:已知二次三项式 有一个因式是 ,求另一个因式以及 的值. 解法一:设另一个因式为 ,得 则 , ∴ 解得 , . ∴另一个因式为 , 的值为-21. 解法二:设另一个因式为 ,得 ∴当 时, 即 ,解得 ∴ ∴另一个因式为 , 的值为-21. 问题:仿照以上一种方法解答下面问题. (1)若多项式 分解因式的结果中有因式 ,则实数 . (2)已知二次三项式 有一个因式是 ,求另一 ... ...
~~ 您好,已阅读到文档的结尾了 ~~