ID: 25068379

24.1.2 中位数和众数(第1课时)课件(共31张PPT) 人教版数学八年级下册

日期:2026-02-14 科目:数学 类型:初中课件 查看:47次 大小:1473013B 来源:二一课件通
预览图 1/12
24.1.2,31张,八年级,数学,人教,PPT
  • cover
(课件网) 24.1 数据的集中趋势 24.1.2 中位数和众数 (第1课时) 人教版 数学 八年级 下册 数据误导 某次数学考试,婷婷得了78分. 全班共30人, 其他同学的成绩为1个100分,4个90分, 22个80分,以及一个2分和一个10分.婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”. 婷婷说对了吗? 你对此有何评价? 导入新知 职 员 D 阿冲应聘 导入新知 职员C 我工资5200元,在公司中算中等收入. 我们好几人工资都是4500元. 人事 应聘者 我公司员工的收入很高,月平均工资为6000元. 这个公司员工收入到底怎样呢? 1. 了解中位数和众数的意义,会求一组数据的中位数和众数. 2. 会用中位数和众数描述一组数据的集中趋势. 学习目标 3. 掌握中位数、众数的作用,会用中位数、众数分析实际问题. 问题 甲、乙两组同学的跳绳成绩(单位:次/min)如下: 甲组 182 194 143 185 156 乙组 199 148 242 170 141 计算得到甲和乙两组跳绳成绩的平均数分别为172次/min和180次/min.张华个人的跳绳成绩为175次/min,她认为自己的成绩在甲组中属于中上水平,在乙组中属于中下水平,你认可张华的说法吗? 探究新知 知识点 1 中位数   分析:张华的跳绳成绩要处于一个组的中上(或中下)水平,意味着她的成绩超过(或低于)这个组至少一半人数的成绩,即超过(或低于)这个组中成绩排名居中的人的成绩. 解:按从小到大的顺序分别排列两组跳绳成绩, 甲组为143 156 182 185 194 处在中间位置的数是182,它的左侧和右侧各有2个数. 乙组为141 148 170 199 242 处在中间位置的数是170,它的左侧和右侧各有2个数. 张华的个人跳绳成绩175小于182,而大于170,因此它的成绩在甲组处于中下水平,在乙组中处于中上水平,这与她自己作出的判断相反. 探究新知 一般地,一组数据按从小到大(或从大到小)顺序排列,处于中间位置的数叫作这组数据的中位数. 如果数据的个数是奇数时,处于中间位置的数就是中位数;当数据的个数是偶数,居中的数据有两个,取这两个数据的平均数为这组数据的中位数. 【思考】如果数据的个数是奇数时,中位数会是什么?如果数据的个数是偶数呢? 探究新知 中位数定义: 上述中间位置的数182和170,分别是甲组和乙组数据集中趋势的一种刻画.你能总结出中位数的概念吗? 1.求中位数要将一组数据按大小顺序排列,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以. 探究新知 注意: 2.当数据个数为奇数时,中位数是这组数据中的一个数据;但当数据个数为偶数时,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等. 在一次男子马拉松长跑比赛中,随机抽取12名选手所用的时间(单位:min)如下: 136 140 129 180 124 154 146 145 158 175 165 148 (1)这组样本数据的中位数是多少? 解:(1)先将样本数据按照从小到大的顺序排列:_____ 这组数据的中位数为_____的平均数,即中位数为_____. 因此,样本数据的中位数是_____. 124 129 136 140 145 146 148 154 158 165 175 180 处于居中两个数据146,148 147 考点 1 求中位数 探究新知 (2)一名选手所用的时间是142 min,推测他的成绩是否超过这次比赛中一半以上的选手? 根据(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,大约有_____选手的所用时间小于147 min,有_____选手的所用时间大于147 min. 这名选手的所用时间是142 min,小于中位数,可以推测他的成绩比_____选手的成绩好. 一半 一半 一半以上 探究新知 解: 探究新知 归纳总结 中位数的特征及意义: 2.如果一组数据中 ... ...

~~ 您好,已阅读到文档的结尾了 ~~