ID: 14091657

24.8 综合与实践 进球路线与最佳射门角 课件(共20张PPT)

日期:2024-12-23 科目:数学 类型:初中课件 查看:91次 大小:1639801B 来源:二一课件通
预览图 1/9
24.8,综合,实践,进球,路线,最佳
  • cover
(课件网) 24.8综合与实践 进球线路与最佳射门角 24.8综合与实践 冲向球门跑,越近就越好; 歪着球门跑,射点要选好! 足球场上的顺口溜: 24.8综合与实践 足球场上,常需带球跑动到一定位置后,再进行射门,这个位置为射门点,射门点与球门边框两端点的夹角就是射门角。 在不考虑其他因素的情况下,一般说来,射门角越大,射门进球的可能性就越大。 感受新知 24.8综合与实践 运动员带球跑动的三种常见线路(用直线l表示) 你知道吗? 横向跑动 斜向跑动 直向跑动 24.8综合与实践 思考:横向跑动时,射门角度是怎么变化呢? 探索新知 24.8综合与实践 思考:当直线l向上平移到直线l′时,射门角度是怎么变化呢? 最佳射门角的大小和直线l与AB的距离有关,由图可知,当直线l与AB的距离越近,最佳射门角越大,射门进球的可能就越大,这与我们踢足球的经验相吻合. 探索新知 冲向球门跑,越近就越好 24.8综合与实践 通过上面探究,我们可以得到以下结论: 如果⊙O过点AB,而直线AB的同侧的三点C1、C0、C2,分别在⊙O外,⊙O上和⊙O内,则有: ∠AC1B﹤∠AC0B﹤∠AC2B 探索新知 24.8综合与实践 C 探索新知 24.8综合与实践 探索新知 24.8综合与实践 探索新知 24.8综合与实践 当运动员直向跑动时,球门AB与直线l垂直,点C是运动员的位置。 (1)作出过A、B、C三点的圆,猜想当点C在直线l上移动时,直线l与该圆的位置关系; 探索思考 24.8综合与实践 思考:当运动员直向跑动时,直线l垂直穿过球门AB,点C时运动员的位置. (1)∠ACB的大小是怎么变化的? (2)直线l上还有没有最佳射门点?说明你的理由. 挑战自我 24.8综合与实践 C 应用新知 24.8综合与实践 A 应用新知 24.8综合与实践 应用新知 24.8综合与实践 40° 应用新知 24.8综合与实践 应用新知 24.8综合与实践 应用新知 24.8综合与实践 应用新知 24.8综合与实践 应用新知 24.8综合与实践

~~ 您好,已阅读到文档的结尾了 ~~