(
课件网) §8.1定义与命题(2) 教学目标 1.知道命题的组成、命题的一般形式; 2.理解并掌握真命题、假命题、反例这 些概念。 自学指导 要求:阅读课本P36-37,解决以下几个问题: 1.什么是命题的条件和结论? 2.什么是真命题?什么是假命题? 3.什么是反例? 观察下列命题,你能发现这些命题有什么共同特征? 1、如果两个三角形的三条边对应相等,那么这两个三角形全等。 2、如果两个角是对顶角,那么这两个角相等。 3、如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。 4、如果两条平行线被第三条直线所截,那么同位角相等。 “那么”引出的部分是结论 每个命题都是由条件和结论两部分组成,条件是 已知的事项,结论是由已知事项推断出的事项 一般地,命题都可以写成“如果……,那么……”的形式, 其中 “如果”引出的部分是条件 特征 1、对顶角相等. 命题的结构 例题:把下列命题改写成“如果…,那么…”的形式,并指出命题的条件和结论 2、三条边对应相等的两个三角形全等 3、在同一个三角形中,等角对等边 下列各命题的条件是什么?结论是什么? 1、如果两个角相等,那么它们是对顶角 2、如果a>b,c>b,那么a=c 3、如果明天下大暴雨,那么明天放假 4、正方形的四条边都相等 5、全等三角形的面积相等 做一做 条件 结论 1 2 3 4 5 这几个命题哪些是正确的?哪些不正确?你是怎么知道它们是不正确的? 1、如果两个角相等,那么它们是对顶角; 2、如果a>b,b>c,那么a=c; 3、两角和其中一角的对边对应相等的两 个三角形全等; 4、如果室外气温低于0℃,那么地面上的水一定会结冰。 5、全等三角形的面积相等。 假命题 假命题 真命题 真命题 真命题 不正确 正确 正确 正确 不正确 说明假命题的方法: 举反例 使之具有命题的条件,而不具有命题的结论 称为真命题, 称为假命题。 正确的命题 不正确的命题 巩固练习 1、课本38页1、2题 2、课本37页随堂练习 课堂小结 1、命题都是由条件和结论两部分组成 2、说明一个命题是假命题的方法: 举反例 “如果……那么……” 条件 结论 达标检测 见导学案中小学教育资源及组卷应用平台 七年级数学(下)导学案(第八章) 8.1定义与命题(2) 【学习目标】 1.知道命题的组成、命题的一般形式; 2.理解并掌握真命题、假命题、反例这些概念。 【知识回顾】 什么是定义?命题?如何来判定一个语句是不是命题? _____。 【课前预习】 一.自主学习:自学课本36-37页的内容,回答下面问题: (1)命题的一般形式是什么 (2)命题是由哪两部分组成的 出卷网 (3)真命题、假命题的定义? (4)反例的概念:要判断一个命题是假命题,通常可以举出一个例子, , ,就可以说明这个命题是假命题,这种例子称为反例。 二.预习检测 1.命题“如果两个角相等,那么它们是对顶角。”的条件是 , 结论是 ,是 命题。 2.命题“正方形的四条边都相等。”的一般形式是 , 条件是 ,结论是 ,是 命题。 【课中实施】 方法点拨: 1.有些命题没有写成“如果……,那么……”的形式,条件和结论不明显,于是应先把它写成命题的一般形式,再写条件和结论。21世纪教育网版权所有 2.在辨别真假命题时注意:假命题只需举一个反例即可,而真命题除公理和性质外,必须通过推理得证。 【当堂达标】(共10分) 1.(1分)下列命题是真命题的是( ) A.如果两个角不相等,那么这两个角不是对顶角; B.两互补的角一定是邻补角 C.如果a2=b2,那么a=b; D.如果两角是同位角,那么这两角一定相等 2.(1分)下列命题是假命题的是( ) A.如果a∥b,b∥c,那么a∥c; B.锐角三角形中最大的角一定大于或等于60° C.两条直线被第三条直线所截,内错角相等; D.长方形的对角线相等且 ... ...