一、精心选一选,相信你一定能选对!(每题4分,共40分) 1.下面四个图形中,∠1与∠2是对顶角的图形 ( ) A.甲 B.乙 C.丙 D.丁 2.如图,不能判定 AB∥CD的条件是( ) A.∠B+∠BCD=1800; B.∠1=∠2; C.∠3=∠4; D.∠B=∠5. 3.下列说法正确的是( ) A.0.25是0.5的一个平方根 B.72的平方根是7 C.正数有两个平方根,且这两个平方根之和等于0 D.负数有一个平方根 若P在第二象限,且到x轴的距离为3,到y轴的距离为4,则点P的坐标为 ( ) A.(3,4) B.(-3,4) C.(-4,3) D.(4,3) 5.下列运算正确的是( ). A. B. C. D. 6.在3.14, 中,无理数有( )个 A.1个 B.2个 C.3个 D.4个 7.如图,AB∥EF,∠C,则、、的关系是( ) A. B. C. D. 8.从估算的值是在( ). A.和之间 B.和之间 C.和之间 D.和之间 9.下列说法中正确的个数有 ( ) (1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行. A.1个 B.2个 C.3个 D.4个 10.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如 (1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…根据这个规律探索可得,第100个点的坐标为( ). A.( 14,0 ) B.( 14,-1) C.( 14,1 ) D.( 14,2 ) 二、细心填一填,相信你填得又快又好!(每小题4分,共24分) 11.的平方根是 . 12.如图,直线交于点,射线平分,若,则 . 13.若,则点M(a,b)关于y轴的对称点的坐标为 . 14..如图所示,把直角梯形ABCD沿DA方向平移到梯形EFGH,HG=24 cm,WG=8 cm,WC=6 cm,求阴影部分的面积为__ _. 15.一张对边互相平行的纸条折成如图所示,EF是折痕, 若,则① ② ③ ④ 以上结论正确的有 .(填序号) 观察下列计算过程:…, 由此猜想= 三、解答题((本大题4个小题,每小题6分,共24分) 17.化简 18.已知求的算术平方根. 19.如图,∠1=∠2,∠3=100°,求∠4的度数. 20.如下图,这是某市部分简图,已知医院的坐标为(一2,一2),请建立平面直角坐标系,分别写出其余各地的坐标。 四、解答题:(本大题4个小题,每小题10分,共40分) 21. ∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数. 22. 与在平面直角坐标系中的位置如图. ⑴分别写出下列各点的坐标: ; ; ; ⑵说明由经过怎样的平移得到 . ⑶若点(,)是内部一点,则平移后内的对应点的坐标为 ; ⑷求的面积. 23.已知:如图, AC∥DF,直线AF分别直线BD、CE 相交于点G、H,∠1=∠2, 求证: ∠C=∠D. 解:∵∠1=∠2(已知) ∠1=∠DGH( ), ∴∠2=__ _____( 等量代换 ) ∴ // _____( 同位角相等,两直线平行 ) ∴∠C=_ _( 两直线平行,同位角相等 ) 又∵AC∥DF( ) ∴∠D=∠ABG ( ) ∴∠C=∠D ( ) 24. 如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理. 五、解答题:(本大题2个小题,25题10分,26题12分,共22分) 25. 如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°, 试求:(1)∠EDC的度数; (2)若∠BCD=n°,试求∠BED的度数。(用含n的式子表示) 26. 已知, BC∥OA,∠B=∠A=100°,试回答下列问题: 如图1所示,求证:OB∥AC. (2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC ,并且OE平分∠BOF。则∠EOC的度数等于__ _____;(在横线上填上答案即可). (3)在(2) 的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值. (4 ... ...
~~ 您好,已阅读到文档的结尾了 ~~