ID: 19573480

串讲 立体几何 学案(原卷版+解析版)2023-2024学年中职数学高教版拓展模块一上册

日期:2025-05-12 科目:数学 类型:学案 查看:81次 大小:1358829B 来源:二一课件通
预览图 0
串讲,学年,模块,拓展,高教,数学
    串讲 立体几何 知识网络 二、常考题型 三、知识梳理 1.平面的基本性质 (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面. (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. (4)推论1:经过一条直线和这条直线外的一点,有且只有一个平面. (5)推论2:经过两条相交直线,有且只有一个平面. (6)推论3:经过两条平行直线,有且只有一个平面. 2.空间直线的位置关系 (1)位置关系的分类 (2)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角). ②范围:. 3.空间中直线与平面、平面与平面的位置关系 (1)空间中直线与平面的位置关系 位置关系 图形表示 符号表示 公共点 直线a在平面α内 a α 有无数个公共点 直线在平面外 直线a与平面α平行 a∥α 没有公共点 直线a与平面α斜交 a∩α=A 有且只有一个公共点 直线a与平面α垂直 a⊥α (2)空间中两个平面的位置关系 位置关系 图形表示 符号表示 公共点 两平面平行 α∥β 没有公共点 两平面相交 斜交 α∩β=l 有一条公共直线 垂直 α⊥β且 α∩β=a 4.空间中线面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行 线面平行”) ∵l∥a,a α,l α, ∴l∥α 性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行 线线平行”) ∵l∥α,l β, α∩β=b, ∴l∥b 5.面面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行 面面平行”) ∵a∥β,b∥β, a∩b=P, a α,b α, ∴α∥β 性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ∵α∥β,α∩γ=a, β∩γ=b, ∴a∥b 6.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直. (2)判定定理:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. (3)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面. (4)直线和平面垂直的性质: ①垂直于同一个平面的两条直线平行. ②直线垂直于平面,则垂直于这个平面内的任一直线. ③垂直于同一条直线的两平面平行. 7.直线和平面所成的角 (1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角. (2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°. (3)直线和平面所成角的范围是0°≤θ≤90°. 8.二面角的有关概念 (1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. (3)二面角的范围是0°≤θ≤180°. 9.平面与平面垂直 (1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理与性质定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平面的垂线,则这两个平面垂直 性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 四、常考题型探究 考点一 平面的基本性质 例1. 能确定一个平面的条件是( ) A.一个点和一条直线 B.空间三个点 C.无数个点 D.两条相交 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~