ID: 19653466

6.3解三角形 同步练习(含解析)2023——2024学年沪教版(2019)高中数学必修第二册

日期:2024-12-23 科目:数学 类型:高中试卷 查看:63次 大小:1154378B 来源:二一课件通
预览图 1/5
学年,第二,必修,数学,高中,2019
  • cover
6.3解三角形同步练习 学校:_____姓名:_____班级:_____考号:_____ 一、单选题 1.在中,,则( ) A. B. C. D. 2.在中,分别根据下列条件解三角形,其中有两解的是( ) A.,, B.,, C.,, D.,, 3.已知△ABC的内角A,B,C的对边分别为a,b,c,a=2,,,则b=(  ) A.4 B.3 C.2或4 D.2或3 4.在中,角所对的边分别为,且,则的形状为( ) A.正三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形 5.在中,,,且的面积为,则的周长为( ) A.15 B.12 C.16 D.20 6.的内角的对边分别为.已知,,,则的外接圆半径为( ) A. B. C. D. 7.某中学校园内的红豆树已有百年历史,小明为了测量红豆树高度,他选取与红豆树根部在同一水平面的,两点,在点测得红豆树根部在北偏西的方向上,沿正西方向步行40米到处,测得树根部在北偏西的方向上,树梢的仰角为,则红豆树的高度为( ) A.米 B.米 C.米 D.米 8.甲船在B岛正南方向的A处,AB=10 km,若甲船以4 km/h 的速度向正北方向航行,同时,乙船自B岛出发以6 km/h的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( ) A. h B. h C. h D. h 二、多选题 9.在中,内角,,所对的边分别为,,.若,内角的平分线交于点,,,以下结论正确的是( ) A. B. C. D. 10.嘌呤是一种杂环有机化合物,它在能量的供应、代谢的调节等方面都有十分重要的作用,它的化学结构式主要由一个正五边形与一个正六边形构成(设它们的边长均为1),其平面图形如图所示,则( ) A. B.O到AC的距离是 C.O是的内切圆的圆心 D. 11.如图,在中,内角的对边分别为,若,且是外一点,,则下列说法正确的是( ) A.是等边三角形 B.若,则四点共圆 C.四边形面积的最小值为 D.四边形面积的最大值为 12.某货轮在A处看灯塔B在货轮的北偏东方向,距离为;在A处看灯塔C在货轮的北偏西方向,距离为.货轮由A处向正北航行到D处时,再看灯塔B在货轮的南偏东方向,则下列说法正确的是(  ) A.A处与D处之间的距离是24 B.灯塔C与D处之间的距离是16 C.灯塔C在D处的南偏西方向 D.D处在灯塔B的北偏西方向 三、填空题 13.已知分别为三个内角的对边,,且,则周长的取值范围为 . 14.如图,在平行四边形中,E,F分别是AD,CD的中点,且,,,则平行四边形的面积为 . 15.四边形ABCD中,,,,设△ABD与△BCD的面积分别为,,则的最大值为 . 16.已知的角A,B,C的对边分别为a,b,c,且,则 ,若,,则 . 四、解答题 17.已知,,分别为三个内角,,的对边,且. (1)求; (2)若,求的值; (3)若的面积为,,求的周长. 18.已知内角,,的对边分别是,,,. (1)求的大小; (2)若,将射线和射线分别绕点,顺时针旋转,,旋转后相交于点(如图所示),且,求. 19.如图,在中,,是斜边上的一点,,. (1)若,求和的面积; (2)若,求的值. 20.为改进城市旅游景观面貌 提高市民的生活幸福指数,城建部拟在以水源为圆心空地上,规划一个四边形形状的动植物园.如图:四边形内接于圆(注:圆的内接四边形的对角互补),为动物园区,为植物园区(为了方便植物园的植物浇水灌溉,水源必须在植物园区的内部或边界上).又根据规划已知千米,千米. (1)若,且,求边的长为多少千米? (2)若线段千米,求动植物园的面积(即四边形的面积)的最小值为多少平方千米? 21.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车 ... ...

~~ 您好,已阅读到文档的结尾了 ~~