
《复数的概念》 教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导. 复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解. 课时分配 1课时. 1.了解引进复数的必要性;理解虚数单位i以及i与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等). 2.通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识. 3.通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念. 难点:虚数单位i的引进及复数的概念. 请同学们回答以下问题: (1)在自然数集N中,方程x+4=0有解吗? (2)在整数集Z中,方程3x-2=0有解吗? (3)在有理数集Q中,方程x2-2=0有解吗? 活动设计:先让学生独立思考,然后小组交流,最后师生总结. 活动成果:问题(1)在自然数集中,方程x+4=0无解,为此引进负数,自然数→整数; 问题(2)在整数集中,方程3x-2=0无解,为此引进分数,整数→有理数; 问题(3)在有理数集中,方程x2-2=0无解,为此引进无理数,有理数→实数. 数集的每一次扩充,对数学本身来说,解决了在原有数集中某种运算不能实施的矛盾,如分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 提出问题:从自然数集N扩充到实数集R经历了几次扩充?每一次扩充的主要原因是什么?每一次扩充的共同特征是什么? 活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结. 活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要. 扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律. 设计意图 回顾从自然数集N扩充到实数集R的过程,帮助学生认识数系扩充的主要原因和共同特征. 提出问题:方程x2+1=0在R上有解吗?如何对实数集进行扩充,使方程x2+1=0在新的数集中有解? 活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成. 学情预测:学生讨论可能没有统一结果,无法描述. 类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0的根,即i2=-1;(2)新数i与实数之间满足加法、乘法的交换律、结合律以及乘法对加法的分配律. 设计意图 面对新问题的需要,感到扩充实数集的必要性,通过类比,猜想增添的新数需满足的条件. 提出问题:同学们设想,实数a与新数i相加,实数b与新数i相乘,结果如何表达?实数a与实数b和新数i相乘的结果相加,如何表示? 活动设计:学生动手操作,尝试写出新数与实数加法和乘法的运算,然后教师引导,更正不正确的写法,统一新数的特点,为引出复数的概念做铺垫. 活动成果:a+i,bi,a+bi. 根据条件(2),i可以与实数b ... ...
~~ 您好,已阅读到文档的结尾了 ~~