ID: 21210480

3.2.2图形的旋转(二)七大题型(一课一练)2024-2025九年级上册数学同步讲练【浙教版】(原卷+解析版)

日期:2025-05-23 科目:数学 类型:初中试卷 查看:32次 大小:3229783B 来源:二一课件通
预览图 0
3.2.2,数学,解析,原卷,教版,讲练
    中小学教育资源及组卷应用平台 2024-2025九年级上册数学课堂同步练习【浙教版】 3.2.2图形的旋转(二)七大题型(一课一练) 一、单选题 1.下列图形是旋转对称图形的是(  ) A. B. C. D. 【答案】C 【分析】根据旋转对称图形的定义可判断A、B、D都不是旋转对称图形,C图形是旋转对称图形. 【详解】解:A、图形只能旋转360°后能与原图形重合,所以A图形不是旋转对称图形; B、图形只能旋转360°后能与原图形重合,所以B图形不是旋转对称图形; C、图形绕旋转中心旋转120°后能与原图形重合,所以C图形是旋转对称图形. D、图形分布不均,故此选项不是旋转对称图形. 故选:C. 【点睛】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等. 2.图中的风车图案绕点O 旋转,若旋转后的图案与原来的图案重合,则旋转的角度至少为( ) A. B. C. D. 【答案】B 【分析】该图形被平分成四部分,旋转的整数倍,就可以与自身重合.本题考查了旋转对称图形的概念,熟练掌握旋转对称图形的定义是解题的关键. 【详解】解:根据题意可知该图形被平分成四部分,旋转的整数倍,就可以与自身重合, 故旋转角最少为. 故选:B. 3.如图,将先向右平移2个单位长度,然后向上平移1个单位长度再绕原点O旋转,得到,则点 A的对应点的坐标是( ) A. B. C. D. 【答案】B 【分析】本题主要考查了坐标与图形变化—旋转和平移,根据“上加下减,左减右加”的平移规律先求出平移后点A对应点的坐标,再根据绕原点旋转180度即相当于点A与点关于原点对称即可得到答案. 【详解】解;由题意得,点A的坐标为, ∴将先向右平移2个单位长度,然后向上平移1个单位长度后点A对应点坐标为, ∴再绕原点O旋转,点 A的对应点的坐标是, 故选;B. 4.如图,将绕点A按顺时针方向旋转后得到,点P是y轴上任意一点,当的值最小时,则点P的坐标为( ) A. B. C. D. 【答案】C 【分析】本题考查坐标与旋转,坐标与轴对称,一次函数与坐标轴的交点问题,根据旋转的性质,画出,确定的坐标,作关于轴的对称点,直线与轴的交点即为点,进行求解即可. 【详解】解:由图可知, 将绕点A按顺时针方向旋转后得到,则, 点A关于y轴对称的点,则:, ∴当三点共线时,的值最小, 连接交y轴于点P, 则点P即为所求的点, 设直线的解析式为:, 则, 解得, ∴直线的解析式为:, 当时,, ∴, 故选:C. 5.如图,在直角坐标系中,正的边在轴的正半轴上,若,则正绕着点顺时针旋转后,点的对应点坐标是( ) A. B. C. D. 【答案】D 【分析】本题考查坐标与图形变化旋转,熟知等边三角形的性质及勾股定理是解题的关键. 过点的对应点作轴的垂线,利用勾股定理及等边三角形的性质即可解决问题. 【详解】解:令点和点旋转后的对应点分别为和,过点作轴的垂线,垂足为, 由旋转可知, 是等边三角形,且边长为2, ,轴, , 则. 在中, , 所以点的坐标为. 故选:D. 6.如图,线段在平面直角坐标系内,点坐标为,线段绕原点顺时针旋转,得到线段,则点的坐标为(  ) A. B. C. D. 【答案】D 【分析】本题主要考查了图形的旋转与坐标的变化,点的坐标的特征,旋转的性质,全等三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键. 先画出旋转后的图形,再过点A作轴于B,过点作于C,证明,得到,,然后利用数形结合的思想进行求解即可. 【详解】解:如图,过点A作轴于B,过点作于C, ∵,点坐标为, ∴,,, ∴, ∵线段绕原点顺时针旋转,得到线段, ∴,, ∴, ∵, ∴, ∴, ∴, ∴,, ∵点 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~