ID: 21292509

2024-2025学年北师大版数学八年级上册 2.1认识无理数 教案

日期:2024-12-24 科目:数学 类型:初中教案 查看:62次 大小:96612B 来源:二一课件通
预览图 1/2
2024-2025,学年,北师大,数学,八年级,上册
  • cover
《认识无理数》 教材分析 本节课是在已经学习了有理数的基础上,通过对有理数的回顾,引入无理数。通过实际活动,让学生感受到认识无理数的必要性。学习本节课,为后面学习平方根、立方根奠定了基础,并将数的范围扩大到了实数。通过对无理数历史性的认识,让学生形成发展的思维模式,激发学生学习的兴趣。 二、教学目标 知识与技能: 1.应用数形结合的方法,通过探究引出无理数,并用类比的思想得出无理数的概念。 2.能判断给出的数是否为有理数还是无理数,并能说出现由. 过程与方法 1.让学生体会无理数的引入过程,体会数形结合的思想,感受无理数存在的必要性和合理性,培养学生探索的精神. 2.通过对有理数、无理数的判断,能正确地进行推理和判断,训练学生的思维判断能力: 情感、态度与价值观 1.通过呈现毕达哥拉斯学派对无理数的认知过程,让学生感受无理数产生的实际背景,培养学生用发展的眼光看待数学. 重点,难点: 1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数. 2.会判断一个数是否为无理数. 三、教学过程 (一)问题与情景 古希腊的毕达格拉斯学派曾认为,所有的数量都可以用整数或整数的比表示,这个结论正确吗?随着人类对数的认识的不断加深和发展,人们发现,现实世界中确实存在着不同于有理数的数。 (二)回顾旧知识 有理数的概念和列举 引入问题:除了有理数外还有没有其它的数呢? (三)探索活动 1、怎样把两个边长为1的小正方形通过剪、拼,得到一个大正方形? 沿对角线剪开,通过旋转、平移得到一个边长为a的大正方形: 2、想一想: a2=2,提出问题你知道a等于几吗? a可能是整数吗? 想想12=1,22=4,,所以没有哪个整数的平方可以等于2, 所以a一定不可能是整数; a可能是分数吗? 我们再想想,最简分数无论怎么平方结果一定还是最简分数,分数的平方也不可能等于2, 所以a也不可能是分数, 那么,a既不是整数也不是分数,所以,它就不可能是有理数。 引入无理数的概念。 列举:圆周率π=3.14159265……(无限不循环小数) 0.585885888588888……(有规律,但不循环) 得到无理数的概念:无限不循环小数称为无理数。 练习 通过练习能过熟练掌握判断有理数和无理数的方法。 拓展 无理数的发现 毕达格拉斯学派是以古希腊哲学家、数学家、天文学家毕达格拉斯为代表人物的一个学派。毕达格拉斯学派发现了无理数,这是数学史上的一件大事,它导致了第一次数学危机。 毕达格拉斯学派有一个信条:“万物皆数”,即宇宙间的一切现象都能归结为 整数或整数之比,也就是一切现象都可以用有理数去描述。公元前5世纪,毕达格拉斯学派的一个成员希伯索斯发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,。这个发现动摇了毕达格拉斯学派的信条,引起了信徒们的恐慌。据说希伯索斯为此被投入大海,他为发现真理而献出了宝贵的生命。但真理是不可战胜的,后来,古希腊人终于证实,稀薄所思的发现,并进一步给出了证明。 四、结束语: 从无理数的发现可以看出,无理数并不“无理”,它和有理数一样,也都是从现实世界中客观存在的量的反映。 人生的价值,并不是用时间,而是用深度去衡量的。 ———列夫·托尔斯泰 ... ...

~~ 您好,已阅读到文档的结尾了 ~~