
中小学教育资源及组卷应用平台 4.2线段,射线,直线湘教版( 2024)初中数学七年级上册同步练习 一、选择题:本题共12小题,每小题3分,共36分。在每小题给出的选项中,只有一项是符合题目要求的。 1.下列说法正确的是( ) A. 两点之间的所有连线中,直线最短 B. 连接两点的线段叫做两点间的距离 C. 过两点有且只有一条直线 D. 直线和直线表示不是同一条直线 2.下列说法中正确的有( ) 过两点有且只有一条直线;连接两点的线段叫两点的距离; 有公共端点的两条射线组成的图形叫做角;如果,则点是的中点. A. 个 B. 个 C. 个 D. 个 3.如图所示,,是线段上任意两点,是的中点,是的中点,若,,则的长度是( ) A. B. C. D. 以上都不对 4.下列四个有关生活、生产中的现象:用两个钉子就可以把一根木条固定在墙上;植树时,只要定出两棵树的位置,就能确定同一排树所在的直线;从地到地架设电线,总是尽可能沿着线段架设;把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A. B. C. D. 5.平面上有三点、、,如果,,,则( ) A. 点在线段上 B. 点在线段的延长线上 C. 点在直线外 D. 点可能在直线上,也可能在直线外 6.下列语句:钝角大于;两点之间,线段最短;作;明天可能下雨同旁内角不互补,两直线不平行其中是命题的是( ) A. B. C. D. 7.如图,在 中,是上一点,,分别是,的中点,连结,,,设 的面积为,则( ) A. B. C. D. 8.数学来源于生活,又应用于生活生活中有下列现象,其中能用“经过两点有且只有一条直线”来解释的现象有( ) 植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上; 小狗看到远处的食物,径直向食物奔跑过去; 木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线; 把笔尖看成一个点,当这个点运动时便得到一条线. A. B. C. D. 9.如图,,且.、是上两点,,若,,,则的长为( ) A. B. C. D. 10.如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ) A. 两点之间,线段最短 B. 两点确定一条直线 C. 过一点,有无数条直线 D. 连接两点之间的线段叫作两点间的距离 11.如图所示,由济南始发终点至青岛的某一次列车,运行途中停靠的车站依次是:济南淄博潍坊青岛,那么要为这次列车制作的单程火车票种. A. B. C. D. 12.如图,一支水笔正好与一把直尺平靠放在一起,小明发现:水笔的笔尖端点正好对着直尺刻度约为处,另一端点正好对着直尺刻度约为则水笔的中点位置的刻度约为( ) A. B. C. D. 二、填空题:本题共4小题,每小题3分,共12分。 13.点,在射线上,已知线段,点是的中点,在射线上还有一点,且,则_____. 14.,,三点在同一条直线上,,分别是,的中点,且,,则_____. 15.如图,已知,,为的中点,则线段的长为 . 16.如图,点是线段的中点,点是线段的中点,若,则_____. 三、解答题:本题共6小题,共48分。解答应写出文字说明,证明过程或演算步骤。 17.本小题分 已知线段,是直线上的一点,,,是的中点,求的长 18.本小题分 已知,试探究并回答下列问题: 是否存在一点,使它到,两点的距离之和等于?并说明理由; 是否存在一点,使它到,两点的距离之和等于?如果存在,那么它的位置是唯一的吗? 点在直线上,当点到,两点的距离之和等于时,试说明点的可能位置. 19.本小题分 如图,线段,点是线段的中点,点是线段的中点. 如图,求线段的长; 如图,点是线段上的一点,且满足,求的长度; 在的条件下,点是线段上的一点,且,求的长. 20.本小题分 如图,,为线段上两点,为的中点,,求的长. 21.本小题分 如图,已知平面上三点、、. ... ...
~~ 您好,已阅读到文档的结尾了 ~~