ID: 21504572

3.6.2角的比较和运算 课件(共28张PPT)

日期:2025-10-22 科目:数学 类型:初中课件 查看:51次 大小:1185704B 来源:二一课件通
预览图 1/9
3.6.2角,比较,运算,课件,28张,PPT
  • cover
(课件网) 第3章 图形的初步认识 3.6 角 3.6.2 角的比较和运算 随堂演练 课堂小结 例题讲解 情境导入 获取新知 观察如图所示的两个角,哪一个更大? 你能从比较线 段长短的方法 得到启示吗? 情境导入 我们之前学习了比较线段长短的方法有: (1)度量法; (2)叠合法. 我们试着用类似的方法比较角的大小. ①我们可以用量角器分别量出角的度数,然后加以比较. 获取新知 如图所示,把一个角放到另一个角上,使它们的顶点重合,其中的一边也重合,并使两个角的另一边都在重合的这一条边的同侧. 显然,∠CGH>∠AOB,或∠AOB<∠CGH. ②叠合法 一副三角板上的角是一些常用的角,除了可以用它们直接画出30°、45°、60°和90°的角之外,还可以画出其他一些特殊的角.如图所示,用两种方法放置一副三角板,可以画出75°和15°的角. 想一想 用一副三角板还可以画出哪些特殊的角? 这些角的度数均是15的倍数. 利用一副三角板拼出的小于180°的角有15°、75°、105°、120°、135°、150°、165°. 思考 由角的大小比较方法我们可以看到,角的大小与它的开口大 小有关,开口越大,角越大;开口一样大,角就相等.前面我们曾 用直尺和圆规准确地作出了一条线段等于已知线段.那么我们能否 用直尺和圆规准确地作出一个角等于已知角呢? 做一做 如图,∠AOB为已知角,试用直尺和圆规按下列步骤准确地 作一个角等于∠AOB. 第一步:作射线O′A′; 第二步:以点O为圆心、适当长为半径作弧,交射线OA于点C,交 射线OB于点D ; 第三步:以点O ′为圆心、线段OC长为半径作弧,交射线O′A′ 于点C′′ ; 第四步:以点C′′为圆心、线段CD长为半径作弧,交前一条弧于点D ′ ; 第五步:经过点D ′作射线O′B ′. ∠ A′O′B′ 就是所要求作的角 . 概括 我们已经用无刻度的直尺和圆规按一定步骤解决了如下两个 作图问题:作一条线段等于已知线段;作一个角等于已知角.无刻 度的直尺和圆规可以用来作一些简单的图形.例如:过一点任作一 条直线;过不同的两点作一条直线;以一点为圆心任作一个圆. 正是以这些基本作图为基础,我们作出了线段和角.人们将利 用没有刻度的直尺和圆规这两种工具作几何图形的方法称为“尺 规作图”.从古至今,众多数学家对于尺规作图有着极大的兴趣, 对于哪些图形可以利用尺规作图作出、哪些图形又不可能利用尺 规作图作出的思考和研究,推动了数学的发展. 尺规作图是探索解决数学问题的有效工具.今后我们还将继续 利用尺规作图解决其他的几何作图问题,直观地发现更多几何图 形的内涵. 我们可以对角进行简单的加减运算,如: (1)34°34′+21°51′= ° ′= ° ′; (2)180°-52°31′= ° ′-52°31′= ° ′. 55 85 179 60 56 25 127 29 角的加减运算 两个角相加或相减,得到的和或差也是角. 观察下图中的∠AOC、∠COB和∠AOB,如何表示它们之间的关系呢?我们可以用熟悉的“和差”来表示: 【做一做】 如图,用量角器和直尺在纸上画∠AOB=84°. 然后沿点O对折,使边OB和OA重合,那么折 痕把角分成了大小相等的两部分. 你也可以用量角器画出等分∠AOB的射线OC. 定义:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. c 几何语言: ∵OC平分∠AOB, ∴∠AOC=∠COB=∠AOB. 或∠AOB=2∠AOC=2∠COB. 例题讲解 例1 根据图回答下列问题: (1)比较∠FOD与∠FOE 的大小; (2)借助三角尺比较∠DOE 与∠DOF 的大小. 【分析】 (1)中两个角有重合边和重合顶点,利用叠合法 比较一目了然,因为OD 边在∠ FOE 的内 部,所以有∠FOD <∠FOE. (2)∠DOE 明显大于 45°,而∠DOF 明显小于 45°,故有∠ DOE >∠DOF . 解: (1)∠FOD<∠FOE. (2) ... ...

~~ 您好,已阅读到文档的结尾了 ~~