【基础版】浙教版数学八上4.3 坐标平面内图形的轴对称和平移同步练习 一、选择题 1.(2024八上·长沙开学考)在平面直角坐标系中,点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为( ) A.(﹣3,﹣1) B.(﹣3,7) C.(1,﹣1) D.(1,7) 【答案】C 【知识点】沿着坐标轴方向平移的点的坐标特征 【解析】【解答】解:点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为(﹣1+2,3﹣4),即(1,﹣1), 故选:C. 【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 2.(2021八上·克东期末)已知:点与点关于x轴对称,则的值为( ) A. B. C. D. 【答案】B 【知识点】关于坐标轴对称的点的坐标特征 【解析】【解答】解:∵点A和点B关于x轴对称, ∴m-1=2,n-1+3=0, m=3,n=-2, ∴. 【分析】关于x轴对称的点的坐标:横坐标相同,纵坐标互为相反数,据此可求出m、n的值,再代入计算即可. 3.(2024八上·乌鲁木齐期末)若与点关于轴对称,则,的值是( ) A., B., C., D., 【答案】A 【知识点】关于坐标轴对称的点的坐标特征 【解析】【解答】解: 点与点关于轴对称, m=-3,n=2. 故答案为:A. 【分析】关于y轴对称的点的坐标变化特征为纵坐标不变,横坐标变为相反数,据此即可解答. 4.(2022八上·宁波期末)在平面直角坐标系中,点平移后能与原来的位置关于y轴对称,则应把点A( ) A.向左平移个单位 B.向右平移个单位 C.向下平移个单位 D.向上平移个单位 【答案】B 【知识点】坐标与图形变化﹣对称;用坐标表示平移 【解析】【解答】解:∵点 A(-3,-4) 平移后能与原来的位置关于y轴对称, ∴平移后的坐标为 (3,-4) ∵横坐标增大 ∴点是向右平移得到,平移距离为 故答案为:B. 【分析】根据关于y轴对称的点横坐标互为相反数,纵坐标不变可得平移后点的坐标,进而点的坐标的平移规律:横坐标,左移减,右移加;纵坐标,上移加,下移减,即可得出答案. 5.(2020七下·自贡期中)线段AB两端点坐标分别为A(–1,4),B(–4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为( ) A.A1(–5,0),B1(–8,–3) B.A1(3,7),B1(0,5) C.A1(–5,4),B1(-8,1) D.A1(3,4),B1(0,1) 【答案】C 【知识点】用坐标表示平移 【解析】【解答】解:∵A(-1,4),B(-4,1)向左平移4个单位长度, ∴A1(-5,4),B1(-8,1). 故答案为:C. 【分析】根据向左边平移横坐标减,纵坐标不变解答. 6.(2024·杭州模拟)如图所示,若点坐标为,则对应的点可能是( ) A.点 B.点 C.点 D.点 【答案】A 【知识点】坐标与图形变化﹣对称 【解析】【解答】解:点(m,n)到(m-2,n+2)即向左平移2个单位,向上平移2个单位,即点A符合题意; 故答案为:A. 【分析】由平移的性质直观判断即可. 二、填空题 7.(2024九上·广州开学考)点关于原点对称点的坐标为 . 【答案】(3,-5) 【知识点】关于原点对称的点的坐标特征 【解析】【解答】解: 点关于原点对称点的坐标为 (3,-5) 故答案为:(3,-5). 【分析】点p(a,b)关于原点对称的点的坐标为(-a,-b). 8.(2024八上·南宁开学考)在平面直角坐标系中,将点先向右平移4个单位长度,再向下平移3个单位长度得到点,则点的坐标是 . 【答案】 【知识点】坐标与图形变化﹣平移 【解析】【解答】解∶ 将点先向右平移4个单位长度,再向下平移3个单位长度得到点,则点的坐标是,即, 故答案为∶. 【分析】根据点的平移即可求出答案. 9.(2024八上·长沙开学考) ... ...
~~ 您好,已阅读到文档的结尾了 ~~