ID: 21685513

15.2.2分式的加减 同步练习(含答案)2024-2025学年人教版八年级数学上册

日期:2024-11-25 科目:数学 类型:初中试卷 查看:32次 大小:29773B 来源:二一课件通
预览图 1/5
15.2.2,数学,八年级,人教,学年,2024-2025
  • cover
2024-2025学年人教版八年级数学上册《15.2.2分式的加减》同步练习(附答案) 一、单选题 1.计算:( ) A.1 B. C. D. 2.已知,则的值是(  ) A.27 B.25 C.23 D.7 3.化简,的结果是( ) A. B. C. D. 4.若,则mn的值是(  ) A.8 B. C. D.42 5.绿化队原来用浸灌方式浇绿地,a天用水m吨,现在改用喷灌方式,可使这些水多用3天,那么现在比原来每天节约用水的吨数为( ) A. B. C. D. 6.已知 则 ( ) A.1 B. C. D. 7.若(不取0和),,,…,,则等于( ) A. B. C. D. 8.已知实数满足,且,则的值为( ) A.9 B.16 C.20 D. 二、填空题 9.计算: . 10.计算的结果是 . 11.化简: . 12.计算 . 13.已知:,则的值为 . 14.小刚在化简时,整式M看不清楚了,通过查看答案,发现得到的化简结果是,则整式M是 . 15.若,则的值为 . 16.甲乙两地相距千米,提速前火车从甲地到乙地要用小时,提速后两地间的行车时间减少了1小时,则提速后火车的速度比提速前的快了 千米/小时. 三、解答题 17.计算题: (1); (2); (3); (4). 18.计算: (1); (2) 19.先化简,再求值:,其中. 20.先化简,再求值:,其中是不等式组的整数解. 21.先化简,再求值:,其中与1,3构成的三边且为整数. 22.小王和小张的加油习惯不同,小王每次加油都说“师傅,给我加300元的油”(油箱未加满).而小张则说:“师傅,帮我把油箱加满!”,现实生活中油价常有变动,现以两次加油为例来研究,谁的两次加油平均单价低,谁的加油方式就省钱.设小王和小张第一次加油油价为x元/升,第二次加油油价为y元/升. (1)用含 x,y的代数式表示分别表示小王和小张两次所加油的平均单价; (2)小王和小张的两种加油方式中,谁的加油方式更省钱?用所学数学知识说明理由, 23.在分式中,对于只含一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:,这样的分式就是假分式,当分子的次数小于分母的次数时,我们称之为“真分式”,例如,这样的分式就是真分式.我们知道,假分数可以化为带分数,类似的,假分式也可以化为“带分式”(即整式与真分式的和的形式),例如:==,===. 参考上面的方法解决下列问题: (1)将分式化为带分式; (2)求分式的最大值;(其中n为正整数) (3)已知分式的值是整数,求t的整数值. 24.阅读下列解题过程:已知,求的值. 解:由知,,即, , 的值为2的倒数,即. 以上解法中先将已知等式的两边“取倒数”,然后求出待求式子倒数的值,我们把这种解法叫做“倒数法”.请你利用“倒数法”解决下面的问题: (1)已知,求的值; (2)已知,求的值; (3)已知,求的值. 参考答案: 题号 1 2 3 4 5 6 7 8 答案 A A C C D A C C 1.解:, 故选:A. 2.解:将两边平方得:, 即, 则. 故选:A. 3.解: , 故选;C. 4.解:, ∴, ∴, 解得:. ∴. 故选:C. 5.解:(吨). 故选:D. 6.解:∵, ∴; ∵ ∴, ∴, 故选A. 7.解:, , , 由此可知,三个一循环, ∵. ∴. 故选:C. 8.解: , , 即, , 而, , . 故选:C. 9.解:, 故答案为:. 10.解: , 故答案为:. 11.解: , 故答案为:. 12.解: , 故答案为:. 13.解:∵, ∴, ∴, 故答案为:6. 14.解:∵化简得到的结果是, ∴ , ∴. 故答案为:. 15.解:∵, ∴, ∴, 即, 当时,,即,此时; 当时,; 故答案为:或. 16.解: 千米/小时, ∴提速后火车的速度比提速前的快了千米/小时, 故答案为:. 17.(1)解:原式 ; (2)解:原式 ; (3)解:原式 ; (4)解:原式 . 18.(1)解: ; (2)解: . 19.解:原式 , 当时, ... ...

~~ 您好,已阅读到文档的结尾了 ~~