
中小学教育资源及组卷应用平台 事件的独立性———高一数学北师大版(2019)必修一课时优化训练 一、选择题 1.某校为丰富学生的课外活动,加强学生体质健康,拟举行乒乓球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为,甲队其余4名队员对乙队每名队员的胜率均为(注:比赛结果没有平局),则甲队最终获胜且种子选手M上场的概率是( ) A. B. C. D. 2.如图,甲乙做游戏,两人通过划拳(剪刀、石头、布)比赛决胜谁首先到达第3格,并规定从0格出发,每次划拳赢的一方往右前进一格,输的一方原地不动,平局时两人都往右前进一格.如果一方连续赢两次,那么他将额外获得右前进一格的奖励,除非已经到达第3格,当有任何一方到达第3格时游戏结束,则游戏结束时恰好划拳3次的概率为( ) 0 1 2 3 A. B. C. D. 3.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图.假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是( ) A. B. C. D. 4.袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸得白球”,如果“第二次摸得白球”记为B,“第二次摸得黑球”记为C,那么事件A与B,A与C间的关系是( ) A.A与B,A与C均相互独立 B.A与B相互独立,A与C互斥 C.A与B,A与C均互斥 D.A与B互斥,A与C相互独立 5.某工厂有A,B两条生产线,需要维护的概率分别为0.2,0.25,且A,B两条生产线是否需要进行维护是相互独立的,则至多有一条生产线需要维护的概率为( ) A.0.95 B.0.45 C.0.55 D.0.05 6.如图,A,B,C表示3个开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性为( ) A.0.054 B.0.994 C.0.496 D.0.06 7.已知篮球运动员甲、乙的罚球命中率分别为0.9,0.8,且两人罚球是否命中相互独立.若甲、乙各罚球一次,则两人都命中的概率为( ) A.0.08 B.0.18 C.0.25 D.0.72 8.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.则甲在4局以内(含4局)赢得比赛的概率为( ) A. B. C. D. 9.甲 乙两人独立地破译一份密码,已知各人能破译的概率分别是0.4,0.5,则两人都能成功破译的概率是( ) A.0.2 B.0.3 C.0.45 D.0.9 10.若古典概型的样本空间,事件,事件A,B相互独立,则事件B可以是( ) A. B. C. D. 二、填空题 11.甲 乙两队进行篮球比赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束),根据前期比赛成绩,甲队的主客场安排依次为“主客主主客客主”,设甲队主场取胜的概率为,客场取胜的概率为,且各场比赛结果相互独立,则甲队以获胜的概率是_____. 12.甲、乙两人独立破译一份密码,已知各人能破译的概率分别为,,两人都成功破译的概率_____. 13.已知事件A,B相互独立,且,,则_____. 14.小李在网上买了一本书和一件衣服,由于强降雨天气影响了快递运输,书按时送达的概率为,衣服按时送达的概率为,且书和衣服的快递运输互不影响,则小明买的书和衣服都能按时送达的概率为_____. 三、解答题 15.某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否 ... ...
~~ 您好,已阅读到文档的结尾了 ~~