首页
初中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 21914207
2024-2025学年人教版九年级上册数学期末综合试卷(含答案)
日期:2024-12-23
科目:数学
类型:初中试卷
查看:21次
大小:577268B
来源:二一课件通
预览图
1/5
张
2024-2025
,
学年
,
人教
,
九年级
,
上册
,
数学
2024-2025学年人教版九年级上册数学期末综合试卷 一、单选题 1.下列食品标识中,既是轴对称图形又是中心对称图形的是( ) A.保健食品 B.绿色食品 C.有机食品 D.速冻食品 2.将方程的左边配成完全平方后,得到的方程是( ) A. B. C. D. 3.一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为( ) A.8 B.10 C.6 D.4 4.一个盒子里有4个除颜色外完全相同的小球,其中红色3个,白球1个,随机从里面拿出一个,是白球的概率为( ) A. B. C. D. 5.若二次函数的图象过不同的几个点、、,则、、的大小关系是( ) A. B. C. D. 6.将抛物线y=3x2向上平移3个单位后得到的抛物线解析式为( ) A.y=3x2+3 B.y=3x2﹣3 C.y=x2+3 D.y=x2﹣3 7.将一个底面半径为,母线长为的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( ) A. B. C. D. 8.若实数,满足,设,则的取值范围是( ) A. B. C. D. 9.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( ) A.18π B.27π C.π D.45π 10.如图,抛物线与轴正半轴交于,两点,若点坐标为,点坐标为,有下列结论: ①; ②; ③; ④当时,. 其中结论正确的个数是( ) A. B. C. D. 二、填空题 11.点关于原点对称的点坐标为 . 12.一部书有上、中、下三册,将它们的顺序随机排放,自左至右恰好为上、中、下的概率是 . 13.如图,为的直径,,是弦,于点,若,则 . 14.已知是一元二次方程的两根,则代数式的值是 . 15.如图,, 分别与⊙ 相切于, 两点,,则 度. 16.如图,抛物线与直线的两个交点坐标分别为,,则关于x的方程的解为 . 17.如图,正方形的边长为,点为对角线上一动点点不与、重合,过点作交直线于,将线段绕点逆时针旋转得到线段,连接,,,下列结论:;;;的最小值为,其中正确的是 填写所有正确结论的序号 18.如图.中,,,,顶点、分别在轴、轴的正半轴上滑动. (1) ; (2)若点是的中点.则点在运动过程中经过的路径长为 ; (3)点到原点的最大的距离是 . 三、解答题 19.解方程 (1) (2) 20.在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取若干人,组成调查小组进行社会调查. (1)随机抽取一人,恰好是男生的概率是 ; (2)随机抽取两人,请用画树状图或者列表法求恰好抽到一名男生和一名女生的概率. 21.如图,AB是⊙O的直径,C为⊙O 上一点,过点C作⊙O的切线DE,AD⊥DE于点D,DE与AB的延长线交于点E,连接AC. (1)求证:AC平分∠DAE; (2)若⊙O的半径为2,∠CAB=35°,求的长. 22.已知关于的一元二次方程 (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求正整数的值. 23.如图,学校为美化环境,在靠墙的一侧设计了一块矩形花圃,其中,墙长,花圃三边外围用篱笆围起,共用篱笆.设CD的长为. (1)则的长为 ,的长为 ,(用含x的代数式表示) (2)若花圃的面积为 ,求花圃一边的长; (3)花圃的面积能达到?说明理由. 24.某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
中考备考攻坚课程第六讲:压轴题难点突破2:函数图像与性质应用探究题 自主学习单(2024-12-23)
中考备考攻坚课程第三讲:填空题难点突破1:反比例函数中的K值计算 自主学习单(2024-12-23)
中考备考攻坚课程第九讲:压轴题难点突破5:新定义阅读题 自主学习单(2024-12-23)
中考备考攻坚课程第二讲:选择题难点突破2:几何图形轨迹最值问题(自主学习单)(2024-12-23)
中考备考攻坚课程第十讲:压轴题难点突破6:与几何变换相关的探究题 自主学习单(2024-12-23)
上传课件兼职赚钱