(
课件网) B·九年级上册 1.2 矩形的性质与判定 第3课时 矩形的性质、判定与其他知识的综合 第一章 特殊平行四边形 1.回顾矩形的性质及判定方法. 2.矩形的性质和判定方法与其他有关知识的综合运用.(难点) 学习目标 问题1: 矩形有哪些性质? A B C D O ①是轴对称图形; ②四个角都是直角; ③对角线相等且平分. ①定义:一组邻边相等且有一个角是直角的平行四边形 ②有一组邻边相等的矩形 ③有一个角是直角的菱形 问题2: 矩形有判定方法有哪些? 导入新课 例1:如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长. 分析:由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AD=6,即可求得AE的长. 矩形的性质与判定综合运用 典例精析 讲授新课 解:∵四边形ABCD是矩形, ∴OB=OD,OA=OC,AC=BD, ∴OA=OB, ∵BE:ED=1:3, ∴BE:OB=1:2, ∵AE⊥BD, ∴AB=OA,∴OA=AB=OB, 即△OAB是等边三角形, ∴∠ABD=60°, ∴∠ADE=90°-∠ABD=30°, ∴AE= AD=3. 【点评】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用. 例2:已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. (1)求证:四边形ADCE为矩形; (2)连接DE,交AC于点F,请判断 四边形ABDE的形状,并证明; (3)线段DF与AB有怎样的关系?请直接写出你的结论. (1)求证:四边形ADCE为矩形; 分析:由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形; (1)证明:∵在△ABC中,AB=AC,AD是BC边的中线, ∴AD⊥BC,∠BAD=∠CAD, ∴∠ADC=90°, ∵AN为△ABC的外角∠CAM的平分线, ∴∠MAN=∠CAN, ∴∠DAE=90°, ∵CE⊥AN, ∴∠AEC=90°, ∴四边形ADCE为矩形; 解:四边形ABDE是平行四边形,理由如下: 由(1)知,四边形ADCE为矩形, 则AE=CD,AC=DE. 又∵AB=AC,BD=CD, ∴AB=DE,AE=BD, ∴四边形ABDE是平行四边形; (2)连接DE,交AC于点F,请判断四边形ABDE的形状, 并证明; 分析:利用(1)中矩形的对角线相等推知:AC=DE;结合已知条件可以推知AB∥DE,又AE=BD,则易判定四边形ABDE是平行四边形; 解:DF∥AB,DF= AB.理由如下: ∵四边形ADCE为矩形, ∴AF=CF, ∵BD=CD, ∴DF是△ABC的中位线, ∴DF∥AB,DF= AB (3)线段DF与AB有怎样的关系?请直接写出你的结论. 分析:由四边形ADCE为矩形,可得AF=CF,又由AD是BC边的中线,即可得DF是△ABC的中位线,则可得DF∥AB,DF= AB. 例3:如图,在△ABC中, AB=AC,D为BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD , EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形. 证明:(1)∵△ABC是等腰三角形, ∴∠B=∠ACB. 又∵四边形ABDE是平行四边形, ∴∠B=∠EDC,AB=DE, ∴∠ACB=∠EDC, ∴△ADC≌△ECD. A D C E B (2)∵AB=AC,BD=CD, ∴AD⊥BC,∴∠ADC=90°. ∵四边形ABDE是平行四边形, ∴AE平行且等于BD,即AE平行且等于DC, ∴四边形ADCE是平行四边形. 而∠ADC=90°, ∴四边形ADCE是矩形. A D C E B 例4:如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF. (1)BD与DC有什么数量关系?请说明理由; (2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由. 分析:根据“两直线平行,内错角相等 ... ...