(
课件网) 7.5 三角形内角和定理 第七章 平行线的证明 导入新课 讲授新课 当堂练习 课堂小结 第2课时 三角形的外角 学习目标 1.了解并掌握三角形的外角的定义.(重点) 2.掌握三角形的外角的性质,利用外角的性质进行简单的证明和计算.(难点) 导入新课 复习引入 1.在△ABC中,∠A=80°, ∠B=52°,则∠C= . 3.什么是三角形的内角?其内角和等于多少? 48 ° 三角形相邻两边组成的角叫作三角形的内角, 它们的和是180 °. 2.如图,在△ABC中, ∠A=70°, ∠B=60°, 则∠ACB= ,∠ACD= . A B C D 50 ° 130° B D C A O ● 40 ° 70 ° ? ● ● ● 问题:发现懒洋洋独自在O处游玩后,灰太狼打算用迂回的方式,先从A前进到C处,然后再折回到B处截住懒洋洋返回羊村的去路,红太狼则直接在A处拦截懒洋洋,已知∠BAC=40° , ∠ABC=70°.灰太狼从C处要转多少度角才能直达B处? 利用“三角形的内角和为180°”来求∠BCD,你会吗? 思考:像∠BCD这样的角有什么特征吗?猜想它的性质. 这节课让我们一起来探讨吧. B D C A O ● 40 ° 70 ° ? ● ● ● 由三角形内角和易得∠BCA=180°-∠A-∠CBA=70°, 所以∠BCD=180°-∠BCA=110°. 讲授新课 三角形的外角的概念 一 定义 如图,把△ABC的一边BC延长,得到∠ACD,像这样,三角形的一边与另一边的延长线组成的角,叫做三角形的外角. ∠ACD是△ABC的一个外角 C B A D 问题1 如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是△ABC的一个外角? E 在三角形每个顶点处都有两个外角. ∠ACD 与∠BCE为对顶角,∠ACD =∠BCE; C B A D ∠BCE是△ABC的一个外角,∠DCE不是△ABC的一个外角. 问题2 如图,∠ACD与∠BCE有什么关系?在三角形的每个顶点处有多少个外角? A B C 画一画 画出△ABC的所有外角,共有几个呢 每一个三角形都有6个外角. 每一个顶点相对应的外角都有2个,且这2个角为对顶角. 三角形的外角应具备的条件: ①角的顶点是三角形的顶点; ②角的一边是三角形的一边; ③另一边是三角形中一边的延长线. ∠ACD是△ABC的一个外角 C B A D 每一个三角形都有6个外角. 总结归纳 F A B C D E 如图,∠ BEC是哪个三角形的外角?∠AEC是哪个三角形的外角?∠EFD是哪个三角形的外角? ∠BEC是△AEC的外角; ∠AEC是△BEC的外角; ∠EFD是△BEF和△DCF的外角. 练一练 三角形的外角 A C B D 相邻的内角 不相邻的内角 三角形的外角的性质 二 问题1 如图,△ABC的外角∠BCD与其相邻的内角 ∠ACB有什么关系? ∠BCD与∠ACB互补. 问题2 如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,∠B)有什么关系? 三角形的外角 A C B D 相邻的内角 不相邻的内角 ∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°, ∴∠A+∠B=∠BCD. 你能用作平行线的方法证明此结论吗? D 证明:过C作CE平行于AB, A B C 1 2 ∴∠1= ∠B, (两直线平行,同位角相等) ∠2= ∠A , (两直线平行,内错角相等) ∴∠ACD= ∠1+ ∠2= ∠A+ ∠B. E 已知:如图,△ABC,求证:∠ACD=∠A+∠B. 验证结论 如图 ,试比较∠2 、∠1的大小; 如图 ,试比较∠3 、∠2、 ∠1的大小. 图 图 解:∵∠2=∠1+∠B, ∴∠2>∠1. 解:∵∠2=∠1+∠B, ∠3=∠2+∠D, ∴∠3>∠2>∠1. 拓展探究 性质1:三角形的一个外角等于 与它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个与它不相邻的内角. A B C D 三角形外角的性质: ∠B+∠C=∠CAD ∠CAD > ∠B, ∠CAD > ∠C 归纳总结 练一练:说出下列图形中∠1和∠2的度数: A B C D ( ( ( 80 ° 60 ° ( 2 1 (1) A B C ( ( ( ( 2 1 50 ° 32 ° (2) ∠1=40 °, ∠2=140 ° ∠1=18 °, ∠2=130 ° 例1 如图,在△ABC中,A ... ...