(
课件网) 1.3 正方形的性质与判定 第一章 特殊平行四边形 导入新课 讲授新课 当堂练习 课堂小结 第1课时 正方形的性质 九年级数学上(BS) 教学课件 学习目标 1.理解正方形的概念. 2.探索并证明正方形的性质,并了解平行四边形、 矩形、菱形之间的联系和区别.(重点、难点) 3.会应用正方形的性质解决相关证明及计算问题. (难点) 导入新课 观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在. 情景引入 你还能举出其他的例子吗? 讲授新课 矩 形 〃 〃 问题1:矩形怎样变化后就成了正方形呢 你有什么 发现? 问题引入 正方形的性质 正方形 问题2 菱形怎样变化后就成了正方形呢 你有什么 发现? 正方形 邻边相等 矩形 〃 〃 正方形 〃 〃 菱 形 一个角是直角 正方形 ∟ 正方形定义: 有一组邻边相等并且有一个角是直角的平行四边形叫正方形. 归纳总结 已知:如图,四边形ABCD是正方形. 求证:正方形ABCD四边相等,四个角都是直角. A B C D 证明:∵四边形ABCD是正方形. ∴∠A=90°, AB=AC (正方形的定义). 又∵正方形是平行四边形. ∴正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义). ∴∠A=∠B =∠C =∠D = 90°, AB= BC=CD=AD. 证一证 已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD. A B C D O 证明:∵正方形ABCD是矩形, ∴AO=BO=CO=DO. ∵正方形ABCD是菱形. ∴AC⊥BD. 思考 请同学们拿出准备好的正方形纸片,折一折,观察并思考. 正方形是不是轴对称图形 如果是,那么对称轴有几条 对称性: . 对称轴: . 轴对称图形 4条 A B C D 矩形 菱形 正 方 形 平行四边形 正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有. 平行四边形、矩形、菱形、正方形之间关系: 性质:1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分. 归纳总结 例1 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. A D C B O 已知: 如图,四边形ABCD是正方形,对角线AC、BD相 交于点O. 求证: △ABO、 △BCO、 △CDO、 △DAO是全等的 等腰直角三角形. 证明: ∵ 四边形ABCD是正方形, ∴ AC=BD,AC⊥BD,AO=BO=CO=DO. ∴ △ABO、 △BCO、 △CDO、 △DAO都 是等腰直角三角形,并且 △ABO≌ △BCO ≌ △CDO ≌ △DAO. 典例精析 例2:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由. 解:BE=DF,且BE⊥DF.理由如下: (1)∵四边形ABCD是正方形. ∴BC=DC,∠BCE =90° . (正方形的四条边都相等,四个角都是直角) ∴∠DCF=180°-∠BCE=180°-90°=90°. A B D C F E ∴∠BCE=∠DCF. 又∵CE=CF. ∴△BCE≌△DCF. ∴BE=DF. A B D F E (2)延长BE交DE于点M, ∵△BCE≌△DCF , ∴∠CBE =∠CDF. ∵∠DCF =90° , ∴∠CDF +∠F =90°. ∴∠CBE+∠F=90° , ∴∠BMF=90°. ∴BE⊥DF. C M 例3 如图,在正方形ABCD中, ΔBEC是等边三角形, 求证: ∠EAD=∠EDA=15° . 证明:∵ ΔBEC是等边三角形, ∴BE=CE=BC,∠EBC=∠ECB=60°, ∵ 四边形ABCD是正方形, ∴AB=BC=CD,∠ABC=∠DCB=90°, ∴AB=BE=CE=CD, ∠ABE= ∠DCE=30°, ∴△ABE,△DCE是等腰三角形, ∴∠BAE= ∠BEA= ∠CDE= ∠CED=75°, ∴∠EAD= ∠EDA=90°-75°=15°. 【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小. 解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°. ∴∠AEB=15°. 同理可得∠DEC=15°. ∴∠BEC=60°-15°-15°=30°; 当等边△ADE在正方形ABCD内部时,如图②, AB=AE, ... ...