中小学教育资源及组卷应用平台 专题复习一 等腰三角形中的分类讨论与方程思想 1.若x,y满足 ,则以x,y的值为两边长的等腰三角形的周长为( ). A.12 B.14 C.15 D.12 或15 2.若等腰三角形的周长是29,其中一边是7,则等腰三角形的底边长是( ). A.15 B.7 C.15 或7 D.11 3.如图所示,在小长方形组成的网格中,每个小长方形的长为2,宽为1,A,B两点在网格的格点上,若点C也在网格的格点上,且△ABC是等腰三角形,则满足条件的点C的个数是( ). A.2 B.3 C.4 D.5 4.如图所示,在△ABC中,AB=AC,AE=BE,∠BAE=40°,且AE=AF,则∠FEC等于( ). A.10° B.15° C.20° D.25° 5.在等腰三角形ABC中,∠A 的相邻外角是70°,则∠B为 . 6.如图所示,BC=BD,AD=AE,DE=CE,∠A=36°,则∠B为 . 7.定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形 ABC中,∠A=80°,则它的特征值k= . 8.如图所示,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个 用直尺与圆规画出相应的等腰三角形. 9.如图所示,在△ABC中,已知AB=AC,BC=BD,AD=DE=EB,求∠A的度数. 10.如图所示,直线a,b相交于点O,∠1=50°,点A 在直线a上,直线b上存在点B,使以O,A,B为顶点的三角形是等腰三角形,这样的点 B 有( ). A.1个 B.2个 C.3个 D.4个 11.如图所示,小正方形的边长为1,若以A为顶点的等腰直角三角形的面积为 ,且三角形的顶点都在格点上,这样的三角形有( ). A.4个 B.8个 C.12个 D.16个 12.已知 P 是等边三角形ABC 所在平面内一点,若点 P 与△ABC的三个顶点所组成的△PAB,△PBC,△PAC都是等腰三角形,则这样的点 P 的个数为( ). A.10 B.7 C.4 D.1 13.如图所示,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的点 Q有 个. 14.如图所示,在△ABC中,AB=BC=8,AO=BO,M是射线CO上的一个动点,∠AOC=60°,则当△ABM 为直角三角形时,AM 的长为 15.如图所示为由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是 . 16.如图所示,在△ABC中,AB=AC,AB的垂直平分线交AB 于点 N,交直线 BC于点 M,∠A=40°. (1)求∠BMN 的度数. (2)若将∠A 的度数改为80°,其余条件不变,再求∠M 的大小. (3)你发现了怎样的规律 试证明. (4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗 若不成立,应怎样修改 17.如图所示,△ABC的面积为84,BC=21,现将△ABC沿直线BC 向右平移a(0