ID: 22238650

沪科版七下(2024版)6.1.2 立方根(课件+教案+大单元整体教学设计)

日期:2025-01-22 科目:数学 类型:初中课件 查看:23次 大小:2218403B 来源:二一课件通
预览图 0
科版,七下,2024版,6.1.2,立方根,课件
    中小学教育资源及组卷应用平台 学 科 数学 年 级 七 设计者 教材版本 沪科版 册、章 下册第6章 课标要求 ①了解无理数和实数,知道实数由有理数和无理数组成,了解实数与数轴上的点一一对应。 ②能用数轴上的点表示实数,能比较实数的大小。 ③能借助数轴理解相反数和绝对值的意义,会求实数的相反数和绝对值。 ④了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。 ⑤了解乘方与开方互为逆运算,会用平方运算求百以内完全平方数的平方根,会用立方运算求千以内完全立方数(及对应的负整数)的立方根,和会用计算器计算平方根立方根。 ⑥能用有理数估计一个无理数的大致范围。 ⑦了解近似数,在解决实际问题中,能用计算器进行近似计算,会按问题的要求进行简单的近似计算。 内容分析 本章是初中数学沪科版七年级下册第6章《实数》,属于《义务教育数学课程标准》中的“数与代数”领域中的“数与式”。教材通过平方根、立方根、无理数与实数等概念的引入,扩展了学生的数系认知,从有理数扩展到实数。这些内容是后续学习二次根式、一元二次方程以及函数等知识的基础。 教材通过生活实例,如正方形面积与边长的关系,引出平方根的概念,并通过类似的方法引出立方根。无理数的引入则通常通过探究学习的方式,让学生体验到“开不尽”的数的存在,从而建立无理数的概念。实数与数轴上的点的一一对应关系也是本章的重点内容,这有助于学生理解数形结合的思想。 学情分析 七年级学生在思维上正处于从具体形象思维向抽象逻辑思维的过渡阶段。他们对有理数的概念和运算有了较深的认识,但对无理数这一抽象概念的理解可能存在一定的困难。因此,在教学过程中,需要通过具体的例子和形象的教学手段,逐步建立起学生对实数的抽象概念。 学生的学习习惯上,已经具备了一定的独立思考和自主探究能力,但在合作交流方面可能还需要进一步的引导。此外,学生的运算水平有所提高,但在推理能力和数感方面仍有待加强。 单元目标 (一)教学目标 1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。 2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。 3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应,培养学生数形结合的能力。 4.能用有理数估计一个无理数的大致范围,培养学生的数感。 (二)教学重点、难点 重点:平方根、立方根的概念和实数与数轴上的点的一一对应关系 难点:平方根的概念、无理数的概念。 单元知识结构框架及课时安排 (一)单元知识结构框架 (二)课时安排 课时编号单元主要内容课时数6.1平方根、立方根26.2无理数和实数2第6章小结与复习1 达成评价 课题课时目标达成评价评价任务6.1.1 平方根1.了解平方根、算术平方根的概念,会用根号表示数的平方根、算术平方根。 2.了解乘方与开方互为逆运算,会用平方运算求百以内完全平方数的平方根。 3.会用计算器求一个正数的算术平方根或它的近似值。1.能求各数的平方根和算术平方根。 2.会用计算器求一个正数的算术平方根或它的近似值。任务一:新知导入,通过探究生活实例引入平方根的概念。 任务二:合作交流,探究算术平方根和开平方。 任务三:例题探究,求各数的平方根和算术平方根 任务四:巩固练习,课堂小结6.1.2 立方根1.学生需要了解立方根的概念,能够用根号表示一个数的立方根。 2.能够类比平方根的方法学习立方根及开立方运算,并区分立方根与平方根的不同。 3.会用计算器求一个数的立方根或它的近似值。1.能够用根号表示一个数的立方根。 2.会求一个数的立方根。任务一:复习导入, ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~