(
课件网) 7.1.3 两条直线被第三条直线所截 1.了解同位角、内错角、同旁内角的概念;能够从图形中辨别同位角、内错角、同旁内角. 2.经历对图形的分析、比较的过程,思考数学概念的形成过程. 3.通过观察、比较各类角的特点,提高学生的辨别能力和空间想象能力. 前面我们研究了一条直线与另一条直线相交的情形. 如图,直线AB和CD相交,形成了的这几个角之间有什么关系? 有公共顶点的角:对顶角、邻补角 接下来,我们进一步研究同一平面内一条直线与两条直线分别相交的情形. 如图,直线AB,CD与EF相交(也可以说两条直线AB,CD被第三条直线EF所截) 没有公共顶点的角? 三线八角 同一平面内 一条直线与两条直线分别相交 分别在直线AB,CD的同一侧(上方), 并且都在直线EF的同侧(右侧), ∠1和∠5 具有这种位置关系的一对角叫做同位角. ∠2和∠6是同位角吗?图中还有没有其他同位角?若有,标记出它们. 同一平面内 一条直线与两条直线分别相交 都在直线AB,CD之间, 并且分别在直线EF的两侧(∠3在直线EF的左侧,∠5在直线EF的右侧) ∠3和∠5 具有这种位置关系的一对角叫做内错角. 图中还有没有其他内错角?若有,标记出它们. 同一平面内 一条直线与两条直线分别相交 都在直线AB,CD之间, 并且都在直线EF的同一旁(左侧), ∠3和∠6 具有这种位置关系的一对角叫做同旁内角. 图中还有没有其他内错角?若有,标记出它们. 同一平面内,两条直线被第三条直线所截 分类 基本图形 名称 ∠1与∠5 ∠2与∠6 ∠3与∠7 ∠4与∠8 同位角 ∠3与∠5 ∠4与∠6 内错角 ∠3与∠6 ∠4与∠5 同旁内角 例3. 如图,直线被直线所截. (1)∠1和∠2,∠1和∠3,∠1和∠4各是什么位置关系的角? 解:(1) ∠1与∠2是内错角, ∠1与∠3是同旁内角, ∠1与∠4是同位角. (2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么? 解:(2)如果∠1=∠4,又由对顶角相等,可得∠2=∠4,因此∠1=∠2. 因为∠4和∠3互补, 所以∠4+∠3=180°. 又因为∠1=∠4, 所以∠1+∠3=180°即∠1和∠3互补. 1.分别指出下列各图中的同位角、内错角、同旁内角. 同位角:∠1与∠5,∠2与∠6, ∠3与∠7,∠4与∠8. 内错角:∠3与∠5,∠4与∠6. 同旁内角:∠3与∠6,∠4与∠5. 2.如图,∠B与哪个角是内错角?与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?对∠C进行同样的讨论. ∠B与∠DAB是内错角, 是直线AD与直线BC被直线AB所截 ∠B与∠EAB是同旁内角, 是直线AE与直线BC被直线AB所截 一条直线与另一条直线相交 相交线 一条直线与两条直线分别相交 对顶角 邻补角 垂直 同位角 内错角 有公共顶点 同旁内角 没有公共顶点 特殊 1.如图,∠1和∠2不能构成同位角的图形是( ) D B A C D E 3 2 1 4 2.如图,直线DE,BC被直线AB所截, ∠1与∠2是___角,∠1与∠3是__ _角, ∠1与∠4是___角. 内错 同位 同旁内 3.识别这些角是同位角、内错角还是同旁内角? 1 2 (1) 同位角 1 2 (2) 1 2 (3) 1 2 (4) 1 2 (5) 1 2 (6) 1 2 (7) 1 2 (8) 1 2 1 2 (9) (10) 同位角 同位角 同位角 同位角 × 内错角 同旁内角 × × 4.如图,所标出的 7 个角中共有___对内错角,___对同位角,____对同旁内角. 4 4 2 ... ...