ID: 22522774

19.1.2 函数的图象 预习学案 (2课时,含答案)2024-2025学年数学人教版八年级下册

日期:2025-04-20 科目:数学 类型:初中学案 查看:63次 大小:211880B 来源:二一课件通
预览图 0
19.1.2,答案,八年级,人教,数学,学年
    19.1.2 函数的图象 第1课时 【自主预习】 【感知教材】 阅读教材P75~77,解决以下问题: 1.阅读教材P75引例,完成下列问题: 函数解析式y=x2中, (1)当x=2时,y= 4 ,在坐标系中与之相对应的点是 (2,4) . (2)当x= 5 时,y=25,在坐标系中与之相对应的点是 (5,25) . (3)当x= 1.2 时,y=1.44 ,在坐标系中与之相对应的点是(1.2,1.44). 你发现的规律是:对于一个函数,如果把自变量与函数的每对对应值分别作为点的 横坐标 、 纵坐标 ,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 2.阅读教材P76思考,完成下列问题: (1)如果某一段图象平行于x轴,则这段气温 不发生变化 . (2)如果某一段图象从左到右是上升的趋势,则这段气温 升高 . (3)如果某一段图象从左到右是下降的趋势,则这段气温 降低 . 你发现的规律是:函数图象从左到右是上升的趋势,则函数值y随着x的增大而 增大 ;函数图象从左到右是 下降 的趋势,则函数值y随着x的增大而 减小 . 3.阅读教材P77例3(2),完成下列问题: (1)当x=0.5时,y= 12 ,在坐标系中与之相对应的点是 (0.5,12) . (2)当x= 6 时,y=1,在坐标系中与之相对应的点是 (6,1) . (3)当x= 12 时,y= 0.5 ,在坐标系中与之相对应的点是(12,0.5). (4)如果原题中的“x>0”改为“x<0”,则函数图象在第 三 象限. 通过画函数图象,你发现画函数图象的一般步骤是: ①列表———表中给出一部分自变量的值及其对应的 函数值 . ②描点———在直角坐标系中,以 自变量 的值为横坐标,相应的 函数值 为纵坐标,描出表格中数值对应的各点. ③连线———按照横坐标 由小到大 的顺序,把所描出的各点用 平滑曲线 连接起来. 【微衔接】 1.平面直角坐标系中一共分为四个象限. 2.在坐标系中,点(-2,3)在第 二 象限. 3.点(7,-3)到x轴的距离是 3 个单位长度. 4.若点P(m+3,m-1)在x轴上,则P点的坐标为 (4,0) . 【知识桥】 画一条直线最少需要确定几个点 你能说出其中道理吗 答:两个点;两点确定一条直线. 【当堂小测】 1.大家都知道乌鸦喝水的故事,如图,一只乌鸦看到一个水位较低的瓶子,喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情境的大致图象是(D) 2.下列各曲线中不能表示y是x的函数的是(D) 3.如图是某市某天的气温T(℃)随时间t(时)变化的图象,则由图象可知,该天最高气温与最低气温之差为 12 ℃. 4.一辆快车和一辆慢车按相同的路线从A地行驶到B地,所行驶的路程与时间的函数图象如图所示,下列说法不正确的是(A) A.快车追上慢车需3小时 B.慢车的速度是40千米/时 C.A,B两地相距240千米 D.快车比慢车早到1小时19.1.2 函数的图象 第2课时 【自主预习】 【感知教材】 阅读教材P79~81,解决以下问题: (1)例4中的表格,这是表示函数的一种方法: ; (2)例4中的第(1)问,通过描点,画出函数图象,这是用了函数的一种表示方法: ; (3)例4中的第(2)问,为了表示其中的规律,用了函数的另一种表示方法: ; 你发现了什么规律: 表示函数的三种方法: 1.列表法 (1)用 的形式列出部分 和相应的 的方法. (2)列表法能够直接得出部分 . 2.图象法 (1)用 把函数的对应规律表示出来的方法. (2)图象法能够直观地表示函数的 . 3.解析式法 (1)用 表示出函数的 的方法. (2)解析式法能够明显地表示出函数 . 【微衔接】 1.画函数图象的一般步骤是: , ,连线. 2.已知等式2x-y=8,用x表示y得 . 3.当x=4时,函数y=-3x+7的值为 . 【知识桥】 为了让客户便捷地看懂利率问题,银行以哪种形式呈现存款期限和利率的关系较为合适 说明你的理由. 【当堂小测】 1.在解析式y=2x-7中,下列说法错误的是( ) A.x的数值可以 ... ...

    ~~ 您好,已阅读到文档的结尾了 ~~