
中小学教育资源及组卷应用平台 5.4分式方程 学校:_____姓名:_____班级:_____考号:_____ 一、单选题 1.甲、乙两人同时分别从A、B两地沿同一条公路骑自行车到C地,已知A 、C两地间的距离为60km,B、C两地间的距离为50km,甲骑自行车的平均速度比乙快2km/h ,结果两人同时到达C地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为xkm/h,由题意列出方程,其中正确的是( ) A. B. C. D. 2.下列方程属于分式方程的是( ) A. B. C. D. 3.一艘轮船在两个码头之间航行,顺水航行所需的时间与逆水航行所需的时间相同.已知水流速度是,则轮船在静水中航行的速度是( ) A. B. C. D. 4.下列关于x的方程中(1);(2);(3);(4);(5),其中是分式方程的有( ) A.1个 B.2个 C.3个 D.4个 5.若关于x的分式方程无解,则m的值是( ) A.-1 B.1 C.0 D.0或1 6.若实数a使得关于x的分式方程的解为负数,且使关于y的不等式组 至少有3个整数解,则符合条件的所有整数a的和为( ) A.6 B.5 C.4 D.1 7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是( ) A. B. C. D. 8.学校到县城有28千米,除乘公共汽车外,还需步行一段路程.公共汽车的速度为36千米/时,步行的速度为4千米/时,全程共需1小时.求步行和乘车所用时间各是多少?设步行所用时间为x小时,列方程得( ) A.36x+4(1-x)=28 B.+=28 C.36(1-x)+4x=28 D.36+4= 9.下列方程不是分式方程的是( ) A. B. C. D. 10.若关于的分式方程:的解为正数,则的取值范围为( ) A. B.且 C. D.且 11.若关于x的方程有增根,则m的值为( ) A.0 B.1 C.﹣1 D.2 12.若关于x的方程有增根,则k的值为( ). A.3 B.1 C.0 D.-1 二、填空题 13.当 时,分式方程无解. 14.若关于x的方程﹣5=无解,则m的值为 . 15.若关于的分式方程有增根,则的值为 . 16.计算: . 17.若是分式方程的根,则a的值为 . 三、解答题 18.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线为全程的普通道路,路线包含快速通道,全程,走路线比走路线平均速度提高,时间节省,求走路线的平均速度. 19.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问: (1)大巴与小车的平均速度各是多少? (2)苏老师追上大巴的地点到基地的路程有多远? 20.解方程: (1); (2). 21.若分式与的和为,则x的值为多少? 22.若整数a使得关于x的分式方程有正整数解,且使得关于y的不等式组有解,那么符合条件的所有整数a的和是多少? 23.解分式方程: (1); (2). 24.解方程 (1) (2) 《5.4分式方程》参考答案 题号 1 2 3 4 5 6 7 8 9 10 答案 B B A A D B A C C B 题号 11 12 答案 C A 1.B 【分析】由甲、乙两人速度间的关系可得出甲骑自行车的平均速度为(x+2)km/h,利用时间=路程÷速度,结合两人同时到达C地,即可得出关于x的分式方程,此题得解. 【详解】解:∵乙骑自行车的平均速度为xkm/h,且甲骑自行车的平均速度比乙快2km/h, ∴甲骑自行车的平均速度为(x+2)km/h. 依题意得: . 故选:B. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 2.B 【分析】根据分式方程的定义逐项判断即 ... ...
~~ 您好,已阅读到文档的结尾了 ~~