
3.1.1 函数的概念 教学分析 本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第1课时。 函数的基本知识是高中数学的核心内容之一,函数的思想贯穿于整个初中和高中数学. 对于高一学生来说,函数不是一个陌生的概念。但是,由于局限初中阶段学生的认知水平;学生又善未学习集合的概念,只是用运动变化的观点来定义函数,通过对正比例函数、反比例函数、一次和二次函数的学习来理解函数的意义,对于函数的概念理解并不深刻. 高一学生学习集合的概念之后,进一步运用集合与对应的观点来刻画函数,突出了函数是两个集合之间的对应关系,领会集合思想、对应思想和模型思想。所以把第一课时的重点放在函数的概念理解,通过生活中的实际事例,引出函数的定义,懂得数学与人类生活的密切联系,通过对函数三要素剖析,进一步理解充实函数的内涵。所以在教学过程中分别设计了不同问题来理解函数的定义域、对应法则、函数图象的特征、两个相同函数的条件等问题. 教学目标及核心素养 课程目标 学科素养 通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型; 用集合与对应的思想理解函数的概念; 理解函数的三要素及函数符号的深刻含义; 1.数学抽象:函数符号的含义; 2.逻辑推理:函数的概念; 3.数学运算:求函数的定义域; 4.直观想象:由具体例子概括函数的概念。 教学重难点 1.教学重点:函数的概念,函数的三要素; 2.教学难点:函数的概念及符号的理解。 教学过程 教学设计意图 核心素养目标 复习回顾,温故知新 1. 初中学习的函数的定义是什么? 【答案】设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数.其中x叫自变量,y叫因变量. 2.回顾初中学过哪些函数? (1)一次函数 (2)正比例函数 (3)反比例函数 (4)二次函数 二、探索新知 探究一 函数的概念 问题1. 某“复兴号”高速列车到350km/h后保持匀速运行半小时。这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为 S=350t。 1.思考:根据对应关系S=350t,这趟列车加速到350km/h后,运行1h就前进了350km,这个说法正确吗? 【答案】不正确。对应关系应为S=350t,其中 , 问题2 某电气维修告诉要求工人每周工作至少1天,至多不超过6天。如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w(单位:元)是他工作天数d的函数吗? 【答案】是函数,对应关系为w=350d,其中 。 2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么? 【答案】不是。自变量的取值范围不一样。 问题3 如图,是北京市2016年11月23日的空气质量指数变化图。如何根据该图确定这一天内任一时刻th的空气质量指数的值I?你认为这里的I是t的函数吗? 【答案】是,t的变化范围是,I的范围是 。 问题4 国际上常用恩格尔系数 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高。上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高。你认为该表给出的对应关系,恩格尔系数r是年份y的函数吗? 【答案】y的取值范围是, , 恩格尔系数r是年份y的函数。 3.思考:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗? 【答案】共同特征有: (1)都包含两个非空数集,用A,B来表示; (2)都有一个对应关系; (3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应。 4.函数的概念:设A、B是非 ... ...
~~ 您好,已阅读到文档的结尾了 ~~