
中小学教育资源及组卷应用平台 【专项培优】沪科版数学(2024)七年级下册第七章一元一次不等式与不等式组 一、单选题 1.(2024八上·北海期末)如图,数轴上表示的不等式解集为( ) A. B. C. D. 2.(2021·丽水)若﹣3a>1,两边都除以﹣3,得( ) A.a<﹣ B.a>﹣ C.a<﹣3 D.a>﹣3 3.(2024八下·锦江期末)若,则下列各式中一定成立的是( ) A. B. C. D. 4.(2023七下·广平期末)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少13元.”乙说:“至多10元.”丙说:“至多8元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( ) A. B. C. D. 5.(2024八上·嘉兴月考)若,则下列结论一定成立的是( ) A. B. C. D. 二、填空题 6.(2024七下·哈尔滨月考)不等式3x-1>5的解集是 . 7.(2024七下·昌邑期末)若一个关于x的一元一次不等式组的解集,在数轴上的表示如图所示,则该不等式组的解集为 . 8.(2023八下·揭西期中)若不等式组的解集是,则 . 9.(2023八下·大埔期中)已知关于x的不等式x≥a-1的解集如图所示,则a的值为 . 10.(2024九下·哈尔滨期中)x的一半与4的差不小于2,用不等式表示为 . 11.(2023八上·杭州期中)a与2的和大于0,用不等式表示为 . 三、计算题 12.(2024七下·黄埔期中)求不等式组的正整数解. 13.(2024七下·徐州期末)(1)解方程组: (2)解不等式组: 四、解答题 14.(2023九下·裕华模拟)现有代数式,其中m为负整数,嘉嘉和淇淇给出了不同的条件: (1)根据嘉嘉给出的条件,求代数式的值; (2)根据淇淇给出的条件,求m的值. 15.(2020八下·深圳期中)解不等式组: ,并在数轴上表示不等式组的解集. 五、综合题 16.(2024七下·商南期末)科技节是某校为学生搭建科技创新平台,展现师生科技创新形象及科学素养的重大节日.该校在科技节活动中开展了以“科技创造未来”为主题的科普知识竞赛,各班选派一名同学参加,其中某一环节共有25道题,答对一题得4分,答错或不答每题扣2分,得分不低于88分将有奖品赠送.如果参赛选手想在本环节中获得奖品,则他至少需要答对多少道题? 17.(2020·津南模拟)解不等式组 请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来: (4)原不等式组的解集为 . 18.(2024九下·河东模拟)为加快公共领域充电基础设施建设,规范居民安全用电行为,某市计划新建一批智能充电桩.经调研,市场上有A、B两种型号的充电桩,若购进A种型号充电桩9套与B种型号充电桩10套共需要万元;若购进A种型号充电桩12套与B种型号充电桩8套共需要13.6万元. (1)A、B两种型号的充电桩每套分别为多少万元? (2)该市决定购买A、B两种型号的充电桩共300套,且花费不超过200万元,则至少购买A 种型号充电桩多少套? 六、实践探究题 19.(2024八下·成安期中)某公司有、两种型号的客车,它们的载客量、租金如下表所示: 型号客车 型号客车 载客量/(人/辆) 租金/(元/辆) 已知某中学计划租用、两种型号的客车共辆,同时送七年级师生到生态园参加社会实践活动,该中学租车的总费用不超过元. (1)最多能租用多少辆型号客车? (2)若七年级的师生共有人,请写出所有可行的租车方案. 答案解析部分 1.【答案】A 【知识点】在数轴上表示不等式组的解集 2.【答案】A 【知识点】不等式的性质 3.【答案】D 【知识点】不等式的性质 4.【答案】D 【知识点】一元一次不等式组的应用 5.【答案】C 【知识点】不等式的性质 6.【答 ... ...
~~ 您好,已阅读到文档的结尾了 ~~