
第十七章《勾股定理》勾股定理的应用小节复习题 【题型1 应用勾股定理解决梯子滑动问题】 1.如图,学校高的教学楼上有一块高的校训宣传牌,为美化环境,对校训牌进行维护.一辆高的工程车在教学楼前点处,伸长的云梯(云梯最长)刚好接触到的底部点处.问工程车向教学楼方向行驶多少米,长的云梯刚好接触到的顶部点处? 2.2023年8月18日,世界机器人大会在北京亦庄召开.某科技公司展示了首款人形通用机器人.乐乐爸爸是机器人研发工程师,其中一次机器人的跑步测试方案如下:在滑梯上的乐乐从滑梯顶端D处沿着方向滑下,同时机器人从乐乐对面的A处向B处跑去,恰好在点B处与乐乐相遇,并且机器人的跑步速度与乐乐的下滑速度相同.已知滑梯的高度米,滑梯底部与机器人的出发点之间的距离米.请问,机器人跑步多少米与乐乐相遇? 3.如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离为2米,顶端B距墙顶的距离为1米,若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离为3米,顶端E距墙顶D的距离为2米,点在一条直线上,点在一条直线上,.求: (1)墙的高度; (2)竹竿的长度. 4.如图,风等在点C处,在A,B两处各用一根引线固定着这个风筝,其中引线与水平地面垂直,引线的长度为10米,A,B两处的水平距离为8米(风筝本身的长宽忽略不计). (1)求此时风筝离地面的高度; (2)现要使风筝沿竖直方向上升9米至M处,若A,B位置不变,引线的长度应加长多少米? 【题型2 应用勾股定理解决航海问题】 1.如图,我军巡逻艇正在处巡逻,突然发现在南偏东方向距离海里的处有一艘走私船,以海里小时的速度沿南偏西方向行驶,我军巡逻艇立刻沿直线追赶,半小时后在点处将其追上.求我军巡逻艇的航行速度是多少? 2.一辆轿车从地以的速度向正东方向行驶,同时一辆货车以速度从地向正北方向行驶,2小时后两车同时到达走向公路上的两地. (1)求两地的距离; (2)若要从地修建一条最短新路到达公路,求的距离. 3.漳州某港口停着轮船A和轮船B.两艘轮船同时从该港口出发,轮船A以每小时航行16海里的速度沿北偏东的方向航行,轮船B以每小时航行12海里的速度沿南偏东的方向航行,半个小时之后,两艘轮船相距多少海里? 4.我国在防控新冠疫情上取得重大成绩,但新冠疫情在国外开始蔓延,为了防止境外输入病例的增加,我国暂时停止了一切国际航班、水运.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我国海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,乙巡航艇的航向为北偏西. (1)求甲巡逻艇的航行方向(用含n的式子表示) (2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里? 【题型3 应用勾股定理解决超速问题】 1.如图,A中学位于南北向公路l的一侧,门前有两条长度均为100米的小路通往公路l,与公路l交于B,C两点,且B,C相距120米. (1)现在想修一条从公路l到A中学的新路(点D在l上),使得学生从公路l走到学校路程最短,应该如何修路(请在图中画出)?新路长度是多少? (2)为了行车安全,在公路l上的点B和点E处设置了一组区间测速装置,其中点E在点B的北侧,且距A中学170米.一辆车经过区间用时5秒,若公路l限速为(约),请判断该车是否超速,并说明理由. 2.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行 速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方60米处,过了5秒后,测得小汽车与车速检测仪间距离为100米,这辆小汽车超速 ... ...
~~ 您好,已阅读到文档的结尾了 ~~