首页
初中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 22834292
人教版2024-2025学年九年级数学下册《反比例函数》专题01反比例函数(知识串讲+考点汇总+检测卷)(原卷版+解析)
日期:2025-04-27
科目:数学
类型:初中试卷
查看:85次
大小:3920956B
来源:二一课件通
预览图
0
张
人教
,
函数
,
原卷版
,
检测
,
汇总
,
考点
反比例函数(知识串讲+考点汇总+检测卷) 参考答案与试题解析 模块一 思维导图串知识 模块二 基础知识全梳理(吃透教材) 模块三 核心考点举一反三 模块四 小试牛刀过关测 1.熟练反比例函数的定义、图象与性质; 2.掌握K值的几何意义 3.掌握反比例函数与其他问题的综合。 反比例函数的定义 (1)反比例函数的概念 形如y(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数. (2)反比例函数的判断 判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0). 反比例函数的图象 用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线. (1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值. (2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确. (3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线. (4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴. 反比例函数的性质 反比例函数的性质 (1)反比例函数y(k≠0)的图象是双曲线; (2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小; (3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大. 注意:反比例函数的图象与坐标轴没有交点. 反比例函数系数k的几何意义 比例系数k的几何意义 在反比例函数y图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变. 反比例函数图象上点的坐标特征 反比例函数y=k/x(k为常数,k≠0)的图象是双曲线, ①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k; ②双曲线是关于原点对称的,两个分支上的点也是关于原点对称; ③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 待定系数法求反比例函数解析式 用待定系数法求反比例函数的解析式要注意: (1)设出含有待定系数的反比例函数解析式y(k为常数,k≠0); (2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程; (3)解方程,求出待定系数; (4)写出解析式. 反比例函数与一次函数的交点问题 反比例函数与一次函数的交点问题 (1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点. (2)判断正比例函数y=k1x和反比例函数y在同一直角坐标系中的交点个数可总结为: ①当k1与k2同号时,正比例函数y=k1x和反比例函数y在同一直角坐标系中有2个交点; ②当k1与k2异号时,正比例函数y=k1x和反比例函数y在同一直角坐标系中有0个交点. 反比例函数的应用 (1)利用反比例函数解决实际问题 ①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明. (2)跨学科的反比例函数应用题 要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想. (3)反比例函数中的图表信息题 正确的认识图象,找到关键的点,运用好数形结合的思想. 考点一:判断反比例函数 1.下列函数不是反比例 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
华大师大版2025年春学期七年级下册期中数学试卷(含解析答案)(2025-04-24)
2024-2025学年湖北省孝南区八年级下学期期中数学试题(图片版,含答案)(2025-04-25)
2024-2025学年湖北省孝感市孝南区七年级下学期期中数学试题(图片版,含答案)(2025-04-24)
2024-2025学年石家庄市四十中八下期中数学试卷(图片版,无答案)(2025-04-25)
初中数学北师大版八年级上册 1.1《探索勾股定理》教学设计(第一课时)(教学设计+同步课件)(2025-04-25)
上传课件兼职赚钱