3.4 二次函数 第2课时 二次函数性质的综合应用 一、二次函数性质的综合应用 1.(2024安徽中考第23题)已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1. (1)求b的值; (2)点在抛物线上,点在抛物线上. (ⅰ)若,且,,求h的值; (ⅱ)若,求h的最大值. 2.(2023安徽中考第23题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线. (1)求的值; (2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点. (ⅰ)当时,求与的面积之和; (ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由. 3.(2021安徽中考第22题)已知抛物线的对称轴为直线. (1)求a的值; (2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,.比较y1与y2的大小,并说明理由; (3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比. 4.(2019安徽中考第22题)一次函数y=kx+4与二次函数y=ax2+c的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点 (1)求k,a,c的值; (2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图像相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值. 5.(2016安徽中考第22题)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值. 参考答案与解析 一、二次函数性质的综合应用 1.(2024安徽中考第23题)已知抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1. (1)求b的值; (2)点在抛物线上,点在抛物线上. (ⅰ)若,且,,求h的值; (ⅱ)若,求h的最大值. 【答案】(1) (2)(ⅰ)3;(ⅱ) 【小问1详解】 解:, ∴的顶点为, ∵抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1, ∴抛物线(b为常数)的顶点横坐标为2, ∴, ∴; 【小问2详解】 由(1)得 ∵点在抛物线上,点在抛物线上. ∴, , 整理得: (ⅰ)∵, ∴, 整理得:, ∵,, ∴, ∴; (ⅱ)将代入, 整理得, ∵, ∴当,即时,h取得最大值为. 2.(2023安徽中考第23题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线. (1)求的值; (2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点. (ⅰ)当时,求与的面积之和; (ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由. 【答案】(1) (2)(ⅰ);(2) 【详解】(1)解:依题意,,解得:, ∴; (2)(ⅰ)设直线的解析式为, ∵,∴,解得,∴直线, 如图所示,依题意,,,, ∴, , ∴当时,与的面积之和为, (ⅱ)当点在对称右侧时,则,∴, 当时,, ∴,∴, 解得:, 当时,, ∴, ∴, 解得:(舍去)或(舍去) 综上所述,. 3.(2021安徽中考第22题)已知抛物线的对称轴为直线. (1)求a的值; (2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,.比较y1与y2的大小,并说明理由; (3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比. 【答案】(1);(2),见解析;(3) 【详解】解:(1)由题意得: (2)抛物线对称轴为直线,且 当时,y随x的增大而减小, 当时,y随x的增大而增大. 当时,y1随x1的增大而减小, 时,,时,, ... ...
~~ 您好,已阅读到文档的结尾了 ~~