ID: 22882442

7.1.2全概率公式 导学案(含答案)

日期:2025-05-06 科目:数学 类型:高中学案 查看:98次 大小:983476B 来源:二一课件通
预览图 1/4
7.1.2,概率,公式,导学案,答案
  • cover
人教A版高二(下)数学选择性必修第三册7.1.2全概率公式-导学案 本节课选自《2019人教A版高中数学选择性必修第三册》,第七章《随机变量及其分布列》,本节课主本节课主要学习全概率公式 学生已经学习了有关概率的一些基础知识,对一些简单的概率模型(如古典概型、几何概型)已经有所了解。刚刚学习了条件概率,乘法公式和全概率公式是计算较为复杂概率问题的有力工具。 公式的理解重在在具体的问题情境中进行运用。同时注意运用集合的观点理解公式。 课程目标 学科素养 A.结合古典概型,了解利用概率的加法公式和乘法公式推导出全概率公式的过程; B.理解全概率公式的形式并会利用全概率公式计算概率; C.了解贝叶斯公式以及公式的简单应用. 1.数学抽象:全概率公式 2.逻辑推理:从特殊到一般的思想方法 3.数学运算:运用全概率公式求事件概率 4.数学建模:将相关问题转化为对应概率模型 重点:会用全概率公式计算概率. 难点:理解全概率公式 多媒体 教学过程 教学设计意图 核心素养目标 问题导学 在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率,下面我们再看一个求复杂事件概率的问题. 新知探究 问题1.从有 个红球和b个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回.显然,第1次摸到红球的概率为.那么第2次摸到红球的概率是多大?如何计算这个概率呢? 用 Ri表示事件“第i次摸到红球”,Bi表示事件“第i次摸到蓝球”,i=1,2.事件R2可按第1次可能的摸球结果(红球或蓝球)表示为两个互斥事件的并,即R2=R1R2UB1R2.利用概率的加法公式和乘法公式,得 按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率。 一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω, 且P(Ai)>0,i=1,2,…,n,则对任意的事件B Ω,有 我们称上面的公式为全概率公式. P(B)=P(Ai)P(B|Ai) 三、典例解析 例1. 某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率. 分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解。 解:设A1=“第1天去A餐厅用餐”, B1=“第1天去B餐厅用餐”, A2=“第2天去A餐厅用餐”,则Ω=,根据题意得 P(A1)=P(B1)=0.5, P(A2|A1)=0.6, P(A2|B1)=0.8, 由全概率公式,得 P(A2)= P(A1) P(A2|A1)+ P(B1) P(A2|B1)=0.5×0.6+0.5×0.8=0.7 因此,王同学第2天去A餐厅用餐得概率为0.7. 对全概率公式的理解 某一事件A的发生可能有各种的原因,如果A是由原因Bi (i=1,2,…,n) 所引起,则A发生的概率是P(ABi)=P(Bi)P(A |Bi),每一原因都可能导致A发生,故A发生的概率是各原因引起A发生概率的总和,即全概率公式. 由此可以形象地把全概率公式看成为“由原因推结果”,每个原因对结果的发生有一定的“作用”,即结果发生的可能性与各种原因的“作用”大小有关. 例2:有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%. (1)任取一个零件,计算它是次品的概率; (2)如果取到的零件是次品,计算它是第i(i=1,2,3)台车床加工的概率. 分析:取到的零件可能来自第1台车床,也可能来自第2台或第3台车床,有3种可能.设B=“任取一零件为次品”,Ai=“零件为第i台车床加工”(i=1,2,3),如图所示,可将事件B表示为3个两两 ... ...

~~ 您好,已阅读到文档的结尾了 ~~