首页
高中数学课件、教案、试卷中心
用户登录
资料
搜索
ID: 22934278
四川省遂宁市安居区2024-2025学年高二下学期期中数学试卷(含详解)
日期:2025-05-09
科目:数学
类型:高中试卷
查看:91次
大小:927181B
来源:二一课件通
预览图
1/5
张
四川省
,
遂宁市
,
居区
,
2024-2025
,
学年
,
高二
高2023级数学试题 一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知数列的通项公式为,则的值为( ) A.1 B.2 C.0 D.3 2.已知函数在处可导,且,则( ) A. B.3 C. D.1 3.已知函数,若,则实数的取值范围是( ) A. B. C. D. 4.已知数列满足,若,则( ) A. B.2 C.1 D. 5.已知在上递增,则实数的范围是( ) A. B. C. D. 6.已知等差数列的前项和为,等比数列的前项积为,,,则( ) A.87 B.88 C.89 D.90 7.已知函数的定义域为,,其导函数满足,则不等式 的解集为( ) A. B. C. D. 8.已知,若点为曲线与曲线的交点,且两条曲线在点处的切线重合,则实数的最大值是( ) A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.甲同学通过数列3,5,9,17,33,…的前5项,得到该数列的一个通项公式为,根据甲同学得到的通项公式,下列结论正确的是( ) A. B. C. D.该数列为递增数列 10.函数的定义域为,它的导函数的部分图象如图所示,则下列结论正确的是( ) A.函数有三个极值点 B. C.函数在上单调递增 D.是的极小值点 11.朱世杰(1249年-1314年),字汉卿,号松庭,元代数学家,教育家,毕生从事数学教育,有“中世纪世界最伟大的数学家”之誉.他的一部名著《算学启蒙》是中国最早的科普著作,该书中有名的是“堆垛问题”,其中有一道问题如下:今有三角锥垛果子,每面底子四十四个,问共积几何?含义如下:把一样大小的果子堆垛成正三棱锥形(如图所示,给出了5层三角锥垛从上往下看的示意图),底面每边44个果子,顶部仅一个果子,从顶层向下数,每层的果子数分别为,共有44层,问全垛共有多少个果子?现有一个层三角锥垛,设从顶层向下数,每层的果子数组成数列,其前项和为,则下列结论正确的是( )(参考公式:) A. B.是等比数列 C.函数单调递增 D.原书中该“堆垛问题”的结果为15180 三、填空题:本题共3小题,每小题5分,共15分. 12.在“全面脱贫”行动中,某银行向某贫困地区的贫困户提供10万元以内的免息贷款,贫困户小李准备向银行贷款x万元全部用于农产品土特产的加工与销售,据测算每年利润y(单位:万元)与贷款x满足关系式,要使年利润最大,小李应向银行贷款 万元. 13.已知数列的前 项和 满足 ,则 的通项公式为 . 14.已知函数与的图象有两个交点,则实数的取值范围是 . 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知等差数列的前项和为,满足,. (1)求数列的通项公式; (2)设,求. 16.设函数. (1)求在处的切线方程与坐标轴围成的三角形面积; (2)求在区间上的最大值与最小值 17.已知数列满足,. (1)证明数列为为等比数列,并求数列的通项公式; (2)设,求数列的前项和. 18.已知函数, (1)令函数, ① 讨论函数的单调性. ② 当且时,若有两个零点,求a的取值范围. (2)证明:. 19.若函数的图象上存在三点,且,使得直线与的图象在点处的切线平行,则称为在区间上的“中值点”. (1)若函数在区间上的中值点为,证明:成等差数列. (2)已知函数,存在,使得. (ⅰ)求实数的取值范围; (ⅱ)当时,记在区间上所有可能的中值点之和为,证明:. 高2023级数学参考答案 题号 1 2 3 4 5 6 7 8 9 10 11 选项 B B A A D C B C ABD BCD ACD 1.B【详解】因为,所以.故选:B. 2.B【详解】.故选:B 3.A【详解】因为,所以, 所以函数在R上单调递增,所以,等价于,解得. 4.A【详解】数列中,,,则, 因此数列是周期数列,其周期为3,所以 5.D【 ... ...
~~ 您好,已阅读到文档的结尾了 ~~
立即下载
免费下载
(校网通专属)
登录下载Word版课件
同类资源
2025年北京市海淀区高三二模数学试题(pdf版,无答案)(2025-05-06)
【黑吉辽蒙卷】辽宁省名校联盟2025年高考模拟卷押题卷(5.2)数学二(图片版,含答案)(2025-05-06)
【黑吉辽蒙卷】辽宁省名校联盟2025年高考模拟卷押题卷(5.2)数学三(图片版,含答案)(2025-05-06)
湖北省襄阳市第五中学2025届高三下学期5月适应性考试(一)数学试卷(图片版,含答案)(2025-05-06)
【黑吉辽蒙卷】辽宁省名校联盟2025年高考模拟卷押题卷(一)(5.2)(图片版,含答案)(2025-05-06)
上传课件兼职赚钱