ID: 23824568

300道初中数学几何经典题型汇总(超详细)(含答案)

日期:2025-10-01 科目:数学 类型:初中试卷 查看:23次 大小:4002780B 来源:二一课件通
预览图 1/5
初中,数学,几何,经典,题型,汇总
  • cover
初中数学几何经典题型300道 三角形 全等三角形 直角三角形、勾股定理、面积 角平分线、垂直平分线 平行四边形 矩形、菱形 正方形 梯形 三角形、梯形的中位线 锐角三角函数 解直角三角形 三角函数的综合运用 比例线段 相似三角形 相似三角形的综合运用 圆的有关概念和性质 垂径定理 切线的判定与性质 与圆有关的角 圆中成比例的线段 圆与圆 三角形 知识考点: 理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。关键是正确理解有关概念,学会概念和定理的运用。应用方程知识求解几何题是这部分知识常用的方法。 精典例题: 【例1】已知一个三角形中两条边的长分别是、,且,那么这个三角形的周长的取值范围是( ) A、 B、 C、 D、 分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。 答案:B 变式与思考:在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( ) A、1<AB<29 B、4<AB<24 C、5<AB<19 D、9<AB<19 评注:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。 【例2】如图,已知△ABC中,∠ABC=450,∠ACB=610,延长BC至E,使CE=AC,延长CB至D,使DB=AB,求∠DAE的度数。 分析:用三角形内角和定理和外角定理,等腰三角形性质,求出∠D+∠E的度数,即可求得∠DAE的度数。 略解:∵AB=DB,AC=CE ∴∠D=∠ABC,∠E=∠ACB ∴∠D+∠E=(∠ABC+∠ACB)=530 ∴∠DAE=1800-(∠D+∠E)=1270 探索与创新: 【问题一】如图,已知点A在直线外,点B、C在直线上。 (1)点P是△ABC内任一点,求证:∠P>∠A; (2)试判断在△ABC外,又和点A在直线的同侧,是否存在一点Q,使∠BQC>∠A,并证明你的结论。 分析与结论: (1)连结AP,易证明∠P>∠A; (2)存在,怎样的角与∠A相等呢?利用同弧上的圆周角相等,可考虑构造△ABC的外接⊙O,易知弦BC所对且顶点在弧AB,和弧AC上的圆周角都与∠A相等,因此点Q应在弓形AB和AC内,利用圆的有关性质易证明(证明略)。 【问题二】如图,已知P是等边△ABC的BC边上任意一点,过P点分别作AB、AC的垂线PE、PD,垂足为E、D。问:△AED的周长与四边形EBCD的周长之间的关系? 分析与结论: (1)DE是△AED与四边形EBCD的公共边,只须证明AD+AE=BE+BC+CD (2)既有等边三角形的条件,就有600的角可以利用;又有垂线,可造成含300角的直角三角形,故本题可借助特殊三角形的边角关系来证明。 略解:在等边△ABC中,∠B=∠C=600 又∵PE⊥AB于E,PD⊥AC于D ∴∠BPE=∠CPD=300 不妨设等边△ABC的边长为1,BE=,CD=,那么:BP=,PC=,,而AE=,AD= ∴AE+AD= 又∵BE+CD+BC= ∴AD+AE=BE+BC+CD 从而AD+AE+DE=BE+BC+CD+DE 即△AED的周长等于四边形EBCD的周长。 评注:本题若不认真分析三角形的边角关系,而想走“全等三角形”的道路是很难奏效的。 跟踪训练: 一、填空题: 1、三角形的三边为1,,9,则的取值范围是 。 2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。 3、在△ABC中,若∠C=2(∠A+∠B),则∠C= 度。 4、如果△ABC的一个外角等于1500,且∠B=∠C,则∠A= 。 5、如果△ABC中,∠ACB=900,CD是AB边上的高,则与∠A相等的角是 。 6、如图,在△ABC中,∠A=800,∠ABC和∠ACB的外角平分线相交于点D,那么∠BDC= 。 7、如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,AC=18cm,△CBD的周长为28 cm,则DB= 。 8、纸片△ABC中,∠A=650,∠B=750,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=200,则∠2的度数为 。 9、在△ABC ... ...

~~ 您好,已阅读到文档的结尾了 ~~