4.2 平行线分线段成比例-北师大版数学九年级上册 一、选择题 1.(2025九上·成都月考)如图,在△ABC中,DE∥BC,AD=2,BD=3,AC=10,则AE的长为( ) A.3 B.6 C.5 D.4 2.(2025九上·上城期末)如图,点,在直线上,点,在直线上,且,若,,,,则的值为( ) A.3 B.4 C. D.6 3.(2024九上·衡阳期中)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E、B、D、F,,,,( ) A.7 B. C.8 D. 4.(2025九上·成都月考)如图所示,在△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( ) A. B. C. D. 5. 如图,△ABC的中线AD,BE 相交于点F,过点 E 作EG∥AD 交BC 于点G,则 EG: AF的值是( ) A. B. C. D. 6.(2025九上·西湖期末)如图,五线谱由等距离的五条平行横线组成,现有一条截线与五线谱交于点,,.若线段,则线段的长为( ) A. B.2 C.3 D.9 7.(2022九上·义乌期中)如图,已知AD为△ABC中BC边上的中线,过重心G作GE∥AC,交BC于点E,DE=2,则BC的长为( ) A.12 B.8 C.6 D.4 8.(2024九上·青秀开学考)如图,在中,是边的中点.按下列要求作图: ①以点为圆心、适当长为半径画弧,交线段于点,交于点; ②以点为圆心、长为半径画弧,交线段于点; ③以点为圆心、长为半径画弧,交前一条弧于点,点与点在直线同侧; ④作直线,交于点.下列结论不一定成立的是( ) A. B. C. D. 二、填空题 9.(2025九上·成都月考)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF=8,则DE= . 10.(2025九上·象山月考)如图是一把折叠椅子及其侧面的示意图,把一个简易刻度尺与地面AB垂直放置,其中AB与“0"刻度线重合,O点落在“3"刻度线上,CD与"5"刻度线重合,若测得AB=50cm,则CD的长是 . 11.(2025九上·成都月考)如图,在△ABC中,D是AC的中点,点F在BD上,连接AF并延长交BC于点E,若BF:FD=4:1,BC=10,则CE的长为 . 12.(2024九上·开州月考)如图,中,点D为边BC的中点,连接AD,将沿直线AD翻折至所在平面内,得,连接,分别与边AB交于点E,与AD交于点O.若,,则AD的长为 . 13.(2024九上·杭州期末)如图,在中,,为上的中线,将沿直线翻折得到,与交于点,连接与,分别交于点,,连接,则 若,则 三、解答题 14.(2024九上·上城期中)如图,已知直线分别截直线于点A,B,C,截直线于点D,E,F,与相交于点M.且. (1)如果,求的长; (2)如果,,求的长. 15.(2024九上·衡阳月考)如图,在中,D,E,F分别是,上的点,且,,,,求和的长. 16.(2024九上·钟山期末)如图,在四边形ABCD中,,,,,. (1)求证:四边形ABCD时菱形; (2)延长BC至点M,连接OM交CD于点N,若,求. 17.(2023九上·平山月考)如图1,阳光(平行光线)通过窗户照到厂房内,竖直窗框()在地面上留下2米长的影子(),窗框影子的一端到窗下墙脚的距离为3.6米,窗口底边与地面的距离为1.2米. (1)求窗户的高度(的长); (2)如图2,随着平行光线照射角度的变化,窗框影子的一端沿向右移动到,米,另一端恰好移动到厂房的另一墙脚,求的长. 18.(2023九上·浦东期中)如图,在直角梯形ABCD中,,,对角线AC、BD相交于点O.过点D作,交AC于点F. (1)联结OE,若,求证:; (2)若且,求证:. 19. (1)如图1,已知△ABC中,D是BC的中点,E是AC上一点,,连结AD与BE相交于点F,求的值. 小英、小明和小聪各自经过独立思考,分别得到一种添加辅助线的方法从而解决了问题,小明的解法是: 解:过点C作CH∥BE交AD的延长线于点H(如图2).∵CH∥BE,D是BC的 ... ...
~~ 您好,已阅读到文档的结尾了 ~~