课件编号6485300

3.3.1函数的单调性与导数

日期:2024-05-09 科目:数学 类型:高中教案 查看:56次 大小:282809Byte 来源:二一课件通
预览图 1/4
3.3.1,函数,单调性,调性,导数
  • cover
3.3.1函数的单调性与导数 项目 内容 课题 (共 2 课时) 修改与创新 教学 目标 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次。 教学重、难点 教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学 准备 多媒体课件 教学过程 一、导入新课:函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.二、讲授新课:1.问题:图3. 3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: 运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,. 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数表示函数在点处的切线的斜率.在处,,切线是“左下右上”式的,这时,函数在附近单调递增; 在处,,切线是“左上右下”式的,这时,函数在附近单调递减.结论:函数的单调性与导数的关系 在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减. 说明:(1)特别的,如果,那么函数在这个区间内是常函数. 3.求解函数单调区间的步骤: (1)确定函数的定义域; (2)求导数; (3)解不等式,解集在定义域内的部分为增区间; (4)解不等式,解集在定义域内的部分为减区间.三.典例分析 例1.已知导函数的下列信息:当时,;当,或时,; 当,或时, 试画出函数图像的大致形状.解:当时,,可知在此区间内单调递增;当,或时,;可知在此区间内单调递减; 当,或时,,这两点比较特殊,我们把它称为“临界点”. 综上,函数图像的大致形状如图3.3-4所示.例2.判断下列函数的单调性,并求出单调区间. (1); (2) (3); (4) 解:(1)因为,所以, 因此,在R上单调递增,如图3.3-5(1)所示.(2)因为,所以, 当,即时,函数单调递增; 当,即时,函数单调递减; 函数的图像如图3.3-5(2)所示. (3)因为,所以, 因此,函数在单调递减,如图3.3-5(3)所示. (4)因为,所以 . 当,即 时,函数 ; 当,即 时,函数 ; 函数的图像如图3.3-5(4)所示.注:(3)、(4)生练 例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像. 分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况. 解:思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗? 一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数在或内的图像“陡峭”, 在或内的图像“平缓”.例4.求证:函数在区间内是减函数. 证明:因为 当即 ... ...

~~ 您好,已阅读到文档的结尾了 ~~